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Introduction

This course is an introductory course to (higher) mathematics, and it covers

a wide range of material which is needed in physics. In contrast to mathematics

lectures for mathematics students, where proof techniques play a crucial role, this

course focusses on understanding and applying mathematical techniques

that are often needed for the solution of problems in physics.

Mathematics and mathematical techniques cannot be learnt by just attending and

following the lectures! The lecture can only give an introduction to the mathematical

concepts and techniques. It is crucial that you spend some time to familiarize

yourself with the mathematical concepts and techniques and then apply

them yourself to solve the problems on the weekly exercise sheets!

In the weekly workshops, the workshop tutors will provide help with solving the

problems on the exercise sheets, but ideally you should have tried the problems

yourself beforehand and then ask the workshop tutors for help with those problems

you could not solve. The more problems you solve, the better you will learn the

material and the better you will be prepared. Therefore it is recommendable to

solve all provided problems and not just those to which solutions have to be handed

in.

Note that understanding the solution to a problem is not the same as solving a

problem yourself. Finding the solution yourself without help, or even with

some help, provides a far better understanding and learning effect than

understanding someone else solution!

The key to solving most of the problems on the exercise sheets is firstly to know

which mathematical technique or concept you have to apply and secondly

to have understood the needed technique/concept! Once the needed mathe-

matical technique is identified and understood, finding the solution to the problem

is relatively easy. Therefore it is the wrong approach to focus only on the prob-

lems that you have to hand in every week. Instead you should first study the

v



vi Introduction

worked examples and understand the new mathematical techniques and

concepts that are needed for the problems on the current exercise sheet. Then you

will also find that most problems are rather straight-forward.

1. Introduction to Functions

2. Classical Functions

3. Differentiation

5. & 6. Integration

7. Series Expansions

7. Approximations

2. Trigonometric Functions

8. Complex Numbers

9. Vectors

10. Matrices

4. Analyzing Curves and Functions 

Figure 1: Map of the lecture material



Introduction vii

The course covers mostly topics from analysis and calculus, but the last two

chapters of the lecture give an introduction to the basics of linear algebra. The

connection between the different topics is indicated in the diagram in Figure 1 below.

As a lecturer I am aware that your mathematical knowledge from school may vastly

differ within the class. Therefore, I will try to assume as little as possible, but I have

to assume that some basics are known. If you are not familiar with some notation

or some basic concept, please let me know! Due to the differences in mathematical

background knowledge within the class, some of you may be familiar with several of

the topics and some of you may be familiar with only a few of the topics. I believe

that most of you will find that you have not seen this arrangement of the material

and the connection between the different topics in this form. You may also find that

the presentation is different from how you were taught in school. I hope we will all

enjoy the course.



viii Introduction



Chapter 1

Introduction to Functions

Functions are of paramount importance in physics and engineering in order to de-

scribe physical phenomena such as movement and speed over a period of time, the

change of the temperature over a period of time, as well as gravitation and electricity.

We start the chapter with a motivating example from physics, the so-called ‘free

fall’, which describes the motion of an object that is dropped and falls downward,

due to the gravitation of the earth.

height h   .

y

y=0

y=h0

T
ow

er of P
isa

The ball falls from  

0
When

does the ball reach

the ground?

.

Figure 1.1: A ball is dropped from the Tower of Pisa.

1



2 1. Introduction to Functions

Application 1.1 (free fall)

A man stands on top of the Tower of Pisa and drops a ball. Due to the gravitational

acceleration, the ball falls down. Describe the motion of the ball and determine when

it reaches the ground (see Figure 1.1)

Solution: We assume for convenience that the time t is zero at the moment the

ball is dropped. Thus t measures the time since the ball was dropped. We want to

describe the motion of the ball as a function y = y(t), where y(t) is the position

of the ball above the ground at the time t. The (vertical) distance traveled

at the time t is known from physics to be

s(t) =
1

2
g t2,

where g is the gravitational acceleration g ≈ 9.8 m/s2 (at the earth’s surface).

Since the ball is at height y(0) = h0 at the time t = 0 and since the ball travels

downward, we find that

y(t) = h0 − s(t) = h0 −
1

2
g t2. (1.1)

At the time t0 when the ball hits the ground we have y(t0) = 0, and thus

y(t0) = h0 −
1

2
g t20 = 0 ⇒ h0 =

1

2
g t20. ⇒ 2 h0

g
= t20.

Since t0 > 0, we see that the ball hits the ground at the time

t0 =

√
2 h0

g
.

At its higher side the Tower of Pisa has the height h0 = 56.7 m. Thus we find that

t0 ≈
√

2 × 56.7 m

9.8 m/s2
=

√
113.4

9.8

√
m s2

m
≈ 11.6 s,

that is, the ball falls 11.6 seconds before it hits the ground. Of course, we have used

a simplified scenario in this example and neglected other in influences on the ball

like the aerodynamic resistance. 2

The function (1.1) that describes the free fall of the ball from the tower of Pisa, is

a so-called quadratic function. The class of quadratic functions will be discussed

in detail in Section 1.4 of this chapter.

Before we start with the actual mathematics, we introduce some common notation

that we will use throughout the course.
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Notation 1.2 (sets of numbers)

(a) N = {1, 2, 3, . . .} denotes the set of all positive integers.

(b) N0 = {0, 1, 2, 3, . . .} denotes the set of all non-negative integers.

(c) Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} denotes the set of all integers.

(d) Q denotes the set of all rational numbers, that is, all numbers that can be

represented as fractions n/m, where n and m are both integers and m 6= 0.

(e) R denotes the set of all real numbers. The real numbers contain all integers

and rational numbers, but they contain also numbers like
√

2.

Notation 1.3 (for sets)

Let A and B be sets.

(a) If x is in A, that is, x is an element of A, then we write x ∈ A.

(b) If x is not an element of A, then we write x /∈ A.

(c) If all elements of A are also elements of B, that is, A is a subset of B, then

we write A ⊂ B (or equivalently, B ⊃ A).

(d) The set B without A, denoted by B \ A, is the set of all those numbers

from B that are not in A. In formulas,

B \ A = {x ∈ B : x /∈ A} .

(e) The set ∅ (sometimes also denoted by {}) is called the empty set. It contains

no elements at all; it is empty.

Definition 1.4 (odd and even integers)

An integer n ∈ Z is even if we can write it as n = 2 m with some m ∈ Z. An

integer is odd if it is not even.

The even integers are . . . ,−8,−6,−4,−2, 0, 2, 4, 6, 8, . . . , and the odd integers are

. . . ,−7,−5,−3,−1, 1, 3, 5, 7, . . . . We can describe the set off all even integers by

set of even integers = {2k : k ∈ Z},

and we can describe the set off all odd integers by

set of odd integers = {2k + 1 : k ∈ Z}.

For intervals we use the following standard notation:
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Notation 1.5 (intervals)

Let a, b ∈ R with a < b. Then we have the following types of intervals:

[a, b] = {x ∈ R : a ≤ x ≤ b} (closed interval),

(a, b) = {x ∈ R : a < x < b} (open interval),

(a, b] = {x ∈ R : a < x ≤ b} (half-open interval),

[a, b) = {x ∈ R : a ≤ x < b} (half-open interval).

We see that the round parentheses ‘(’ and ‘)’ mean that the corresponding endpoint

is not included in the interval, whereas the angular parentheses ‘[’ and ‘]’ mean that

the corresponding endpoint is included in the interval. We also have the following

special types of unbounded intervals which have ∞ (infinity) or −∞ (minus

infinity) as an endpoint that is not included in the interval.

[a,∞) = {x ∈ R : a ≤ x < ∞} = {x ∈ R : x ≥ a} (half-open interval),

(a,∞) = {x ∈ R : a < x < ∞} = {x ∈ R : x > a} (open interval),

(−∞, b] = {x ∈ R : −∞ < x ≤ b} = {x ∈ R : x ≤ b} (half-open interval),

(−∞, b) = {x ∈ R : −∞ ≤ x < b} = {x ∈ R : x < b} (open interval),

(−∞,∞) = {x ∈ R : −∞ < x < ∞} = R (open interval).

We call them unbounded intervals because the numbers in any of these intervals

get either arbitrarily large (if the upper endpoint is ∞) or arbitrarily small (if the

lower endpoint is −∞).

For example, with this new notation we have

[2, 7] = {x ∈ R : 2 ≤ x ≤ 7}

and

[1, 2) ⊂ [1, 5] and [1, 5] \ [1, 2) = [2, 5].

1.1 Functions and Graphs

In this section we learn what a function is and discuss some examples. We also

learn how to plot functions.
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Definition 1.6 (function)

A function f : A → B is a rule that associates with each element x of some

set A one particular element y = f(x) of some set B. A is called the domain

of the function, and B is called the codomain of the function. We call x the

independent variable and y = f(x) the dependent variable.

It is also common to write f : x 7→ f(x) to indicate that x ∈ A is mapped onto

f(x) ∈ B.

Usually A and B are subsets of the real numbers R, that is, A ⊂ R and B ⊂ R.

Often A and B are R or an interval or R without some point.

Example 1.7 (function f(x) = x)

An example of a function is

f : R → R, f(x) = x.

Here R is the domain, and R is also the codomain. 2

Example 1.8 (function f(x) = 1/(2 − x))

Another example of a function is

f : R \ {2} → R, f(x) =
1

2 − x
.

Here R \ {2} (that is, the real numbers without 2) is the domain, and R is the

codomain. 2

To discuss functions it would be helpful to have a graphical representation of the

function, a so-called plot.

Definition 1.9 (graph of a function)

The graph G of a function f : A → B is the set of all pairs (x, f(x)) as x assumes

all values in the domain A of f . In formulas,

G =
{(

x, f(x)
)

: x ∈ A
}

.

We can plot/sketch the graph by drawing a suitable collection of pairs (x, f(x))

from the graph in the (x, y)-plane and then connecting (x1, f(x1)) smoothly with

(x2, f(x2)) if x1 and x2 are adjacent.
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Example 1.10 (plot of the graph of the function f(x) = x)

To plot the function f : R → R, given by f(x) = x, from Example 1.7, we determine

the graph of f . Since f(x) = x, the graph is given by

G = {(x, x) : x ∈ R} ,

and we see that the graph consists of all points on the diagonal of the (x, y)-plane.

We are also interested in what happens with f(x) if x gets larger and larger, that

is, what happens with f(x) for x → ∞. Likewise we are interested in what happens

with f(x) if x gets smaller and smaller, that is, what happens with f(x) for x → −∞.

We have

lim
x→∞

f(x) = lim
x→∞

x = ∞ and lim
x→−∞

f(x) = lim
x→−∞

x = −∞.

Thus f(x) = x has the graph shown in Figure 1.2 below. 2

y

2

4

0

-4

x

420

-2

-2-4

Figure 1.2: Graph of f(x) = x.

Before the next example we will introduce another definition.
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Definition 1.11 (asymptote)

Let f : A → B be a function, and A ⊂ R, B ⊂ R. A straight line is called an

asymptote to the graph of the function f if one of the following two conditions

is satisfied:

(i) The straight line is vertical (to the x-axis) and goes through a point (x0, 0)

and we have

lim
x→x0

|f(x)| = ∞.

(ii) The straight line can be described as an affine linear function, that is, as

g(x) = mx + c, and we have either

lim
x→∞

(
f(x) − g(x)

)
= 0 or lim

x→−∞

(
f(x) − g(x)

)
= 0.

Example 1.12 (plot of the graph of the function f(x) = 1/(2 − x))

The graph G of the function f(x) = 1/(2 − x) from Example 1.8 is given by

G =

{(
x,

1

2 − x

)
: x ∈ R \ {2}

}
,

and it is not so easy to visualize in the (x, y)-plane as the graph in the last example.

First we observe that f(x) > 0 for x < 2 and that f(x) < 0 for x > 2. We observe

that as x < 2 tends to 2, the function get arbitrary large because the denominator

tends to zero as x → 2, or, in other words, f(x) tends to infinity as x < 2 tends to

2. In formulas, we describe this by

lim
x<2, x→2

1

2 − x
= ∞.

Likewise we find that

lim
x>2, x→2

1

2 − x
= −∞.

At the point x = 2 the function f has a so-called singularity, and we see that the

straight line that goes through (2, 0) and is vertical (to the x-axis) is an asymptote

to the graph of f . For large |x|, we see that f(x) behaves like 1/(−x), that is,

f(x) =
1

2 − x
≈ 1

−x
for |x| large. (1.2)

From (1.2), we also see that

lim
x→∞

1

2 − x
= 0 and lim

x→−∞

1

2 − x
= 0.
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Thus the straight line given by g(x) = 0 is an asymptote for the graph of 1/(2−x).

To get a sketch of the graph, we evaluate f at the points

x ∈ {−2,−1, 0, 1, 1.5, 1.75, 2.25, 2.5, 3, 4, 5, 6, }
and obtain

(−2, 1/4), (−1, 1/3), (0, 1/2), (1, 1), (1.5, 2), (1.75, 4),

(2.25,−4), (2.5,−2), (3,−1), (4,−1/2), (5,−1/3), (6,−1/4).

We have chosen the points closer together in the vicinity of x = 2 because the

function values increase rapidly as we approach x = 2. Now we plot these points in

the (x, y)-plane and draw a smooth curve through these points such that each point

(x, f(x)) is connected via the graph with with those points with the next larger and

next smaller x-coordinate. We also use our knowledge about the asymptotes of the

graph of 1/(2 − x) and that f(x) > 0 for x < 2 and that f(x) < 0 for x > 2. Thus

we obtain the plot in Figure 1.3 below. 2

y

6

4

2

0

-2

-4

-6

x

86420-2-4

Figure 1.3: The graph of f(x) = 1/(2 − x).
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1.2 Growth of Functions

In order to characterize functions it is helpful to know whether the function values

f(x) increase or decline as x grows.

Definition 1.13 ((strictly) monotonically increasing/decreasing)

Let A ⊂ R, B ⊂ R, and let I ⊂ A be a subinterval of A. Let f : A → B be a

function.

(i) We say that f is monotonically increasing on I if for all x1, x2 ∈ I with

x1 < x2 we have f(x1) ≤ f(x2). If we have a strict inequality, that is, if for

all x1, x2 ∈ I with x1 < x2 we have f(x1) < f(x2) then we call f strictly

monotonically increasing on I.

(ii) We say that f is monotonically decreasing on I if for all x1, x2 ∈ I with

x1 < x2 we have f(x1) ≥ f(x2). If we have a strict inequality, that is, if for

all x1, x2 ∈ I with x1 < x2 we have f(x1) > f(x2) then we call f strictly

monotonically decreasing on I.

Definition 1.13 is illustrated in Figure 1.4 below.

)

�
�
�
���

x

y

x x

f(x

f(x

21

2
)

1 ��
��
��

��
��
��

)
��
��
��

��
��
��

x

y

x

f(x

f(x

x 2

1

1
)

2

��
��
��

��
��
��

Figure 1.4: The function in the left picture is everywhere strictly monotonically

increasing, and the function in the right picture is everywhere strictly monotonically

decreasing.

Let us consider the functions from the examples in the previous section and also
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some additional functions.

Example 1.14 ((strictly) monotonically increasing/decreasing)

(a) The function f : R → R, defined by f(x) = x, from Example 1.7 is strictly

monotonically increasing on R. Indeed, if x1, x2 ∈ R with x1 < x2, then

f(x1) = x1 < x2 = f(x2).

(b) The function f : R → R, defined by f(x) = −x, (see Figure 1.5) is strictly mono-

tonically decreasing on R. Indeed, if x1, x2 ∈ R with x1 < x2, then −x1 > −x2,

and thus f(x1) > f(x2).

(c) The function f : R \ {2} → R, defined by f(x) = 1/(2 − x), from Example 1.8

is strictly monotonically increasing on (−∞, 2) and on (2,∞). To verify this let

us first consider x1, x2 ∈ (−∞, 2) with x1 < x2. Then

f(x1) =
1

2 − x1

<
1

2 − x2

= f(x2) because 0 < 2 − x2 < 2 − x1.

That 0 < 2 − x2 < 2 − x1 can be seen as follows: from x1 < x2 < 2 we get

(by subtracting 2) x1 − 2 < x2 − 2 < 0, and from multiplication by −1 we have

2 − x1 > 2 − x2 > 0. Now let us consider x1, x2 ∈ (2,∞) with x1 < x2. Then

f(x1) =
1

2 − x1

<
1

2 − x2

= f(x2) because 2 − x2 < 2 − x1 < 0.

That 2− x2 < 2− x1 < 0 follows from 2 < x1 < x2 and thus 0 < x1 − 2 < x2 − 2

(from subtracting 2). Multiplying by (−1) yields 0 > 2 − x1 > 2 − x2. 2

0

4

-2
x

y

-4

-2

42

2

0

-4

Figure 1.5: Graph of f(x) = −x.
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We discuss some more examples.

10

8

6

4

2

y

0

x

1050-5-10

y

8

x

4

0
32

-4

0 1-1

-8

Figure 1.6: The graph of f(x) = |x| on the left, and the graph of f(x) = −(x − 1)3

on the right.

Example 1.15 ((strictly) monotonically increasing/decreasing)

(a) The absolute value function f : R → R, defined by (see picture on the left-

hand side in Figure 1.6)

f(x) = |x| =





−x if x < 0,

0 if x = 0,

x if x > 0,

is strictly monotonically decreasing on (−∞, 0] and strictly monotonically in-

creasing on [0,∞). Indeed consider x1, x2 ∈ (−∞, 0], with x1 < x2. Then

−x1 > −x2 and thus f(x1) > f(x2). If x1, x2 ∈ [0,∞) with x1 < x2, then

f(x1) = x1 < x2 = f(x2).

(b) The function f : R → R, defined by f(x) = −(x − 1)3, (see picture on the

right-hand side in Figure 1.6) is strict monotonically decreasing on R.

To verify this we consider three cases:

(1) Let x1, x2 ∈ R with x1 < 1 < x2. Then x1 − 1 < 0 and x2 − 1 > 0, and thus

f(x1) = −(x1 − 1)3 > 0 and f(x2) = −(x2 − 1)2 < 0. Therefore we clearly

have f(x1) > f(x2).
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(2) Now we consider x1, x2 ∈ R with x1 < x2 < 1. Then x1 − 1 < 0 and

x2 − 1 < 0 and therefore f(x1) = −(x1 − 1)3 > 0, f(x2) = −(x2 − 1)3 > 0.

Thus f(x1) = |x1 − 1|3 and f(x2) = |x2 − 1|3. Since x1 < x2 < 1, we find

that x1 − 1 < x2 − 1 < 0, and thus |x1 − 1| > |x2 − 1|. Therefore we finally

get

f(x1) = |x1 − 1|3 > |x2 − 1|3 = f(x2).

(3) Finally we consider x1, x2 ∈ R with 1 < x1 < x2. Then 0 < x1 − 1 < x2 − 1,

and thus 0 < (x1 − 1)3 < (x2 − 1)3. Therefore

f(x1) = −(x1 − 1)3 > −(x2 − 1)3 = f(x2).

Thus we have verified that f(x) = −(x−1)3 is indeed strictly monotonically

decreasing on R. 2

1.3 One-to-one Functions and Inverse Functions

Let us consider y = x + 2. Then we can solve for x and obtain x = y − 2. If y = x2,

where y > 0, we have that x = ±√
y, that is, y = x2 does not have a unique solution.

This leads us to the concept of an inverse function: The function f(x) = x + 2

has the inverse function f−1(y) = y − 2. The function g : R → R, g(x) = x2 does

not have an inverse function because we cannot uniquely solve y = g(x) = x2 for

x ∈ R, since we get the two solutions x = −√
y and x =

√
y.

More formally, the question is whether we can ‘invert’ a function: A function

f : A → B associates with each x ∈ A exactly one y = f(x) ∈ B; but for a given

y in {f(x) : x ∈ A}, how many x ∈ A satisfy f(x) = y? If for each

y ∈ {f(x) : x ∈ A},

there exists only one x ∈ A with f(x) = y, then we can define the inverse

function f−1 : {f(x) : x ∈ A} → A by f−1(y) = x, where x is the unique element

of A satisfying f(x) = y. A function f with this property are called one-to-one.

Definition 1.16 (one-to-one)

Let f : A → B be a function from some set A into another set B. We say that

f is one-to-one if f(x1) = f(x2) for any x1, x2 ∈ A implies that x1 = x2. This

means the following: if for y0 ∈ B, there exists some x0 ∈ A with f(x0) = y0,

then this x = x0 is the only element in A satisfying f(x) = y0.
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Remark 1.17 (not one-to-one)

If a function f : A → B is not one-to-one, then there exist x1, x2 ∈ A with

x1 6= x2 and f(x1) = f(x2). Thus in order to show that a function f : A → B is

not one-to-one, it is sufficient to find x1, x2 ∈ A with x1 6= x2 and f(x1) = f(x2).

Example 1.18 (one-to-one)

(a) f : R → R, defined by f(x) = x, is one-to-one because f(x1) = f(x2) means just

x1 = x2.

(b) f : R → R, defined by f(x) = x2, is not one-to-one, because x2 = (−x)2, and

thus f(x) = f(−x) but x 6= −x.

(c) f : [0,∞) → R, defined by f(x) = x2, is one-to-one , because x2 = y2 implies

x = y, since x ≥ 0 and y ≥ 0.

(d) The constant function f : R → R, defined by f(x) = c with some constant c ∈ R,

is not one-to-one. Indeed, for any two x1 6= x2, we have f(x1) = c = f(x2). 2

Only for a one-to-one function we can define its so-called ‘inverse function’.

Definition 1.19 (inverse function of a one-to-one function)

Let f : A → B be a one-to-one function. Then the function f has an inverse

function f−1 : f(A) → A, y 7→ f−1(y), defined by the properties

f−1
(
f(x)

)
= x for all x ∈ A, and f

(
f−1(y)

)
= y for all y ∈ f(A),

where f(A) is the range of f , that is,

f(A) = {y ∈ B : y = f(x) for some x ∈ A}.

To find the inverse function of a given one-to-one function f : A → B, we con-

sider y = f(x) and solve for x. Then we will find x = f−1(y), with some algebraic

expression f−1(y) and this expression defines the inverse function f−1 : f(A) → A.

Example 1.20 (inverse functions)

(a) The one-to-one function f : R → R, defined by f(x) = x, has the range

f(R) = R. By setting y = f(x) = x, we find that x = f−1(y) = y, and the

inverse function f−1 : R → R is defined by f−1(y) = y. We see that indeed

f−1
(
f(x)︸︷︷︸
= x

)
= f−1(x) = x for all x ∈ R,
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and

f
(
f−1(y)︸ ︷︷ ︸

= y

)
= f(y) = y for all y ∈ R.

(b) To find the inverse of the one-to-one function f : [0,∞) → R, defined by

f(x) = x2, we set

x2 = y ⇒ x = y1/2 =
√

y.

We have that the range of f is f([0,∞)) = [0,∞). Thus the inverse function of

f(x) = x2 is given by

f−1 : [0,∞) → R, f−1(y) =
√

y.

We see that we have indeed

f−1
(
f(x)︸︷︷︸
= x2

)
=

√
x2 = x for all x ≥ 0,

and

f
(
f−1(y)︸ ︷︷ ︸

=
√

y

)
= (

√
y)2 = y for all y ≥ 0. 2

1.4 Affine Linear Functions and Quadratic Func-

tions

In this section we learn about two very important classes of functions: affine linear

functions and quadratic functions.

Definition 1.21 (affine linear function)

A function of the form

f : R → R, f(x) = mx + c,

where m 6= 0 and c are real constants, is called an affine linear function.

Example of an affine linear function: f(x) = 3 x − 5

The graph of an affine linear function f(x) = mx + c is given by

G = {(x, mx + c) : x ∈ R} .
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Plotting the graph (see Figure 1.7), we see that it is a straight line and therefore

has constant slope. Setting x = 0 yields

f(0) = m 0 + c = c

and we see that the function f intersects the y-axis at y = c. The constant

slope of the function is given by

f(x2) − f(x1)

x2 − x1

=
(mx2 + c) − (mx1 + c)

x2 − x1

=
m (x2 − x1)

x2 − x1

= m.

If we choose x2 − x1 = 1 then we find that f(x2) − f(x1) = m as illustrated in

Figure 1.7 below.

x

y

x x

f(x

f(x
−x

f(x 2

1

2)

)
x2

)−f(x1

21

=1

) = m > 0

c

1

x x

−x =1

f(x

f(x

1

1

2

)

)
2x

2

c

y

x

= m < 0
1)−f(x )2

f(x

1

Figure 1.7: On the left the graph of f(x) = mx + c with m > 0, and on the right

the graph of f(x) = mx + c with m < 0.

If |x| gets large then we find the

lim
x→∞

f(x) = lim
x→∞

(
mx + c

)
=

{ ∞ if m > 0,

−∞ if m < 0,

and

lim
x→−∞

f(x) = lim
x→−∞

(
mx + c

)
=

{ −∞ if m > 0,

∞ if m < 0.

Finally we want to investigate whether an affine linear function is (strictly) mono-

tonically increasing or decreasing. Let x1, x2 ∈ R with x1 < x2. If m > 0, then

mx1 < mx2, and thus

f(x1) = mx1 + c < mx2 + c = f(x2),
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and f is strictly monotonically increasing on R. If m < 0, then multiplication

of x1 < x2 with m < 0 yields mx1 > mx2, and thus

f(x1) = mx1 + c > mx2 + c = f(x2).

We see that f is strictly monotonically decreasing on R.

Example 1.22 (inverse function of an affine linear function)

Investigate whether the affine linear function f : R → R, defined by f(x) = mx+ c,

with some constants c and m, where m 6= 0, is one-to-one. If yes, find the range

f(R) of f and find the inverse function f−1 : f(R) → R of f .

Solution: The affine linear function f(x) = mx + c, with m 6= 0 is one-to-one.

Indeed, f(x1) = mx1 + c = mx2 + c = f(x2) implies that mx1 = mx2 and thus

x1 = x2.

The range f(R) of f is R, and this is the domain of f−1. To find the inverse function

f−1 : R → R of the one-to-one function f(x) = mx + c, we set

mx + c = y ⇒ mx = y − c ⇒ x =
y − c

m
=

1

m
y − c

m
.

Thus the inverse function f−1 : R → R is given by

f−1(y) =
1

m
y − c

m
,

and we observe that it is an affine linear function with slope 1/m that intersects

the y-axis at y = −c/m. 2

Summary 1.23 (facts about affine linear functions f(x) = mx + c)

An affine linear function f : R → R is of the form

f(x) = mx + c,

where m 6= 0.

• Its domain, codomain, and range are R.

• It is a straight line with slope m that intersects the y-axis at y = c.

• It is one-to-one and its inverse function is also an affine linear

function.

The next class of functions that we want to discuss are so-called quadratic func-

tions. The simplest example of a quadratic function is f(x) = x2.
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Example 1.24 (quadratic function f(x) = x2)

The function f : R → R, defined by,

f(x) = x2,

has the graph

G =
{
(x, x2) : x ∈ R

}
.

We observe that (−x)2 = x2, that is, f will be mirror-symmetric with respect

to the y-axis. The function has non-negative values since f(x) = x2 ≥ 0 for all

x ∈ R. We find that limx→∞ x2 = ∞ and that limx→−∞ x2 = ∞. The function f is

strictly monotonically increasing on [0,∞) because for any x1, x1 ∈ [0,∞) we

have

0 ≤ x1 < x2 ⇒ f(x1) = x2
1 < x1 x2 ≤ x2

2 = f(x2).

The function f is strictly monotonically decreasing on (−∞, 0] because for any

x1, x1 ∈ (−∞, 0] we have

x1 < x2 ≤ 0 ⇒ −x1 > −x2 ≥ 0 ⇒ |x1| > |x2| ≥ 0

⇒ f(x1) = x2
1 = |x1|2 > |x2|2 = x2

2 = f(x2).

We have for x ∈ {−3,−2,−1,−1/2, 0, 1/2, 1, 2, 3} the points (x, f(x)) given by

(−3, 9), (−2, 4), (−1, 1), (−1/2, 1/4), (0, 0), (1/2, 1/4), (1, 1), (2, 4), (3, 9),

and we can now easily plot f(x) = x2 (see Figure 1.8). The graph in Figure 1.8 is

called a parabola and the point (0, 0) is called the vertex of the parabola. 2

8

4

6

2

0

x

2-2-3 -1 0 31

Figure 1.8: Graph of f(x) = x2.

Now we want to discuss quadratic functions in their most general form.
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Definition 1.25 (quadratic functions)

A function f : R → R of the form

f(x) = a x2 + b x + c,

with real constants a, b, and c, where a 6= 0, is called a quadratic function.

We will show that the graph of such a function is essentially of the form

shown in Figure 1.8, but the graph may by upside-down, scaled, and

shifted. To analyze f(x) = a x2 + b x + c, we try to bring it into the form

f̃(x) = ã (x − b̃)2 + c̃, (1.3)

with ã 6= 0.

Why is a representation of the form (1.3) useful?

• To see this, we first consider the case where ã = 1 and c̃ = 0. Then the

function becomes f̃(x) = (x − b̃)2, and the graph of this function is obtained

by shifting the graph of f(x) = x2 in the horizontal direction by b̃ (to

the left if b̃ < 0 and to the right if b̃ > 0).

• Now consider the case that b̃ = 0 and ã = 1. Then we obtain the function

f̃(x) = x2 + c̃, whose graph can be obtained by shifting the graph of

f(x) = x2 in the vertical direction by c̃ (upwards if c̃ > 0 and downwards

if c̃ < 0).

• Finally we consider the case that b̃ = 0 and c̃ = 0. Then we have f̃(x) = ã x2,

and we see that the graph can be obtained by scaling the graph of f(x) = x2

by the factor ã, that is, all y-coordinates get multiplied by ã.

8

4

6

2

0
x

3-1-2 0 1 42

y

10

8

6

4

2

0
x

3210-1-2-3

y

8

6

4

2

0
x

3210-1-2-3

Figure 1.9: The graph of f(x) = (x − 1)2 on the left, the graph of f(x) = x2 + 1 in

the middle, and the graphs of f(x) = 2 x2 and g(x) = x2 on the right.
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From these observations, we see that the function (1.3) is a parabola with vertex in

the point (̃b, c̃) and it is scaled by a factor ã compared to the ‘standard’ parabola

f(x) = x2. This parabola may intersect the x-axis or not. This can be seen by

setting

f̃(x) = ã (x − b̃)2 + c̃ = 0 ⇒ (x − b̃)2 =
−c̃

ã
.

Since (x − b̃)2 ≥ 0, this equality holds if and only if −c̃/ã ≥ 0. If −c̃/ã ≥ 0, then

the function f̃ intersects the x-axis at the point(s)

(x, 0) =

(
b̃ ±

√
− c̃

ã
, 0

)
.

If −c̃/ã > 0 we have two points of intersection. If −c̃/ã = 0, then we have c̃ = 0,

and we get one point of intersection; this point is the vertex of the parabola.

Now we come back to our general quadratic function and transform it to the form

(1.3). With the binomial formulas

(y + z)2 = y2 + 2 y z + z2, (y − z)(y + z) = y2 − z2,

we find that

f̃(x) = a x2 + b x + c = a

(
x2 +

b

a
x +

c

a

)

= a

[(
x +

b

2 a

)2

+

(
c

a
− b2

4 a2

)]

= a

(
x +

b

2 a

)2

+

(
c − b2

4 a

)
. (1.4)

Now we can apply our knowledge for the case (1.3). From (1.4), we see that the

parabola f(x) = a x2 + b x + c has its vertex at the point
(
− b

2 a
, c − b2

4 a

)
,

and is scaled by the factor a. If

−
(

c

a
− b2

4 a2

)
=

b2 − 4 a c

4 a2
≥ 0 ⇔ b2 − 4 a c ≥ 0,

then we have

f(x) = a x2 + b x + c =

(
x +

b

2a
+

√
b2 − 4 a c

4 a2

)(
x +

b

2a
−
√

b2 − 4 a c

4 a2

)
,
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and the function f(x) = a x2 + b x + c intersects the x-axis at the point(s)

(x, 0) =

(
− b

2a
±
√

b2 − 4 a c

4 a2
, 0

)
=

(−b ±
√

b2 − 4 a c

2 a
, 0

)
.

Summary 1.26 (how to plot a quadratic function)

A quadratic function f : R → R is of the form

f(x) = a x2 + b x + c, with a 6= 0.

• Use the binomial formulas to bring it into the standard form

f̃(x) = ã (x − b̃)2 + c̃. (1.5)

• The vertex of the parabola (1.5) is then at (̃b, c̃).

• The parabola (1.5) is scaled by a factor ã.

• If −c̃/ã ≥ 0, then the parabola (1.5) intersects the x-axis at the point(s)

(x, 0) =

(
b̃ ±

√
− c̃

ã
, 0

)
.

If −c̃/ã > 0 we have two points of intersection. If −c̃/ã = 0, then we have

c̃ = 0, and we get only one point of intersection; this point is the vertex of

the parabola.

We close this chapter by summarizing what we have learned so far about plotting

and analyzing functions. If we want to analyze and plot a function f : A → B

then we are interested in the following:

• for which x then f(x) is positive or negative or zero

• if x ∈ A can get arbitrary large, what happens with f(x) as x → ∞; and if

x ∈ A can get arbitrary small, what happens with f(x) as x → −∞
• if f is undefined at a single point, then what happens with f(x) for x → x0

from below (that is, x < 0) and for x → x0 from above (that is, x > 0)

• to find the asymptotes of f , if it has any

• on which subintervals of A is f (strictly) monotonically increasing or (strictly)

monotonically decreasing



Chapter 2

Classical Functions

In this chapter we discuss the classical functions. In Section 2.1, we discuss briefly

polynomials, the easiest classical functions. In the last chapter we have already

encountered polynomials of degree zero, one, and two, that is, constant functions,

affine linear functions, and quadratic functions, respectively. Trigonometric func-

tions, that is, the sine function, the cosine function, the tangent and cotangent

functions, as well as their inverse functions, are investigated in Section 2.2. Af-

ter that we introduce exponential functions and logarithmic functions (which are

defined as the inverse functions of exponential functions) in Sections 2.3 and 2.4,

respectively. We will discuss exponential and logarithmic functions in some detail.

In Section 2.5 we finally encounter hyperbolic functions and their inverse functions.

2.1 Polynomials

We start by introducing an important class of functions, of which the affine linear

functions and quadratic functions are special cases.

Definition 2.1 (polynomial)

A function f : R → R of the form

f(x) = a0 + a1 x + a2 x2 + . . . + an−1 xn−1 + an xn =
n∑

k=0

ak xk, (2.1)

where the coefficients a0, a1, . . . , an−1, an are fixed real numbers and an 6= 0, is

a polynomial of degree n ∈ N0.

21
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Example of polynomial of degree 5: f(x) = 3 x5 + 7 x4 − 2 x2 + 3.

Example 2.2 (polynomials of degrees 0, 1, and 2)

(a) The polynomials of degree zero are the constant functions

f(x) = c for all x ∈ R,

where c is a real constant. In the representation (2.1) we have n = 0 and a0 = c.

(b) The polynomials of degree one are the affine linear functions

f(x) = mx + c for all x ∈ R,

with real constants m 6= 0 and c. In the representation (2.1) we have n = 1 and

a0 = c and a1 = m.

(c) The polynomials of degree two are the quadratic functions

f(x) = a x2 + b x + c for all x ∈ R,

with real constants a 6= 0, b, and c. In the representation (2.1) we have n = 2

and a0 = c, a1 = b, and a2 = a.

2.2 Trigonometric Functions

From everyday life we are used to measuring angles in degree. For example, a very

steep road may have a warning traffic sign announcing that the slope is 20◦.

In science on the other hand, angles are often measured in radians.

Definition 2.3 (radians)

For the unit circle with radius one, one radians is defined as the angle corre-

sponding to an arc of length one. One radians is approximately 57.3 degree.

Using this complicated definition is much simpler than it might appear at first

glance. Since the length of the unit circle is 2π, we know that 360◦ are 2π radians.

Observing that for an angle θ in degree and its angle φ in radians we have

φ

θ
=

2π

360
⇔ φ =

2π

360
θ

we can work out the following table.
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degree 0 30 45 60 90 180 270 360 θ

radians 0 π/6 π/4 π/3 π/2 π 3π/2 2π 2π θ/360

Table 2.1: Conversion from degree to radians.

We see from the definition of radians that the arc of the unit circle corresponding

to an angle φ measured in radians has just length φ.

After this preparation we can introduce the trigonometric functions whose ar-

gument is given in radians.

Definition 2.4 (sine function and cosine function on [0, 2π])

The functions sine and cosine are geometrically defined as indicated in Figure 2.1

and as explained below. Consider the unit circle, that is, the circle with radius

one, and measure the angle φ starting at the origin (0, 0) from the x-axis anti-

clockwise. We draw a straight line with slope given by this angle φ up to the

intersection of this line with the unit circle. From this intersection we draw a

vertical straight line. The distance on this vertical straight line from its intersec-

tion with the unit circle to the intersection with the x-axis is sin(φ). The distance

along the x-axis from the origin to the intersection of the x-axis with the vertical

straight line is cos(φ).

1
sin(

cos(

φ
φ)

φ)

y

x

Figure 2.1: Definition of the sine function and the cosine function.
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Since sin(0) = sin(2π) and cos(0) = cos(2π), we can easily extend the definition of

sin(x) and cos(x) from [0, 2π] to all R.

Definition 2.5 (sine function and cosine function on R)

Definition 2.4 defines cos(x) and sin(x) for all x ∈ [0, 2π]. Since the angle 2π de-

scribes a full rotation, we have cos(0) = cos(2π) and sin(0) = sin(2π). Therefore

we can define the cosine and the sine function for all x ∈ R in the following way:

We can represent x ∈ R uniquely in the form x = 2π k + φ, with φ ∈ [0, 2π) and

k ∈ Z. Then

cos(x) = cos(2π k + φ) = cos(φ), sin(x) = sin(2π k + φ) = sin(φ), (2.2)

and we have defined the cosine and the sine function on R. From Figure 2.4 and

Pythagoras’ Theorem follows the important formula

(
sin(x)

)2
+
(
cos(x)

)2
= 1 for all x ∈ R.

In order to plot the sine and the cosine function, we use Figure 2.4 to work out some

of its important values.

x in radians 0 π/6 π/4 π/3 π/2 4π/6 3π/4 5π/6 π 3π/2 2π

x in degree 0 30 45 60 90 120 135 150 180 270 360

cos(x) 1
√

3/2
√

2/2 1/2 0 −1/2 −
√

2/2 −
√

3/2 −1 0 1

sin(x) 0 1/2
√

2/2
√

3/2 1
√

3/2
√

2/2 1/2 0 −1 0

Table 2.2: Some important values of the cosine function and the sine function.

From the definition of sine and cosine in Figure 2.4, we can see the following two

useful formulas

cos(−x) = cos(x) and sin(−x) = − sin(x) for all x ∈ R. (2.3)

This can be easily seen by considering for the angle x > 0 the angle −x as a rotation

about the angle x clockwise.
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Now we can plot the cosine and the sine function.

1

0

0.5

8
x

4-4 0

-1

-8

-0.5

1

0

0.5

8
x

4-4 0

-1

-8

-0.5

Figure 2.2: Graph of cos(x) on the left and the graph of sin(x) on the right.

Definition 2.6 (periodic function)

A function f : R → R is called periodic with period L > 0 if we have

f(x) = f(x + L) for all x ∈ R. (2.4)

Note that repeated application of (2.4) implies that

f(x) = f(x + k L) for all x ∈ R and all k ∈ Z.

Example 2.7 (periodic functions)

(a) From (2.2), we see that cos(x) and sin(x) are periodic with period 2π.

(b) The square wave (see Figure 2.3), defined by

f(x) =

{
1 if x ∈ [2k, 2k + 1) with k ∈ Z,

−1 if x ∈ [2k − 1, 2k) with k ∈ Z,
(2.5)

is periodic with period L = 2. Indeed, for any x ∈ [2k − 1, 2k) the point x + 2 is

in [(2k−1)+2, 2k +2) = [2(k +1)−1, 2(k +1)) and thus f(x) = f(x+2) = −1.

Likewise if x ∈ [2k, 2k + 1), then we have x + 2 ∈ [2(k + 1), 2(k + 1) + 1), and

thus f(x) = f(x + 2) = 1. This shows the periodicity of the square wave with

period L = 2.

(c) The functions sin(nx) and cos(nx) have period 2π/n. This follows from the fact

that sin(x) and cos(x) have period 2π, and thus

sin(nx) = sin(nx + 2π) = sin

(
n

[
x +

2π

n

])
,
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cos(nx) = cos(nx + 2π) = cos

(
n

[
x +

2π

n

])
,

which proves the periodicity with period 2π/n. 2

x

y

1

−1

−3 −2 −1 1 2 3

Figure 2.3: Graph of the square wave (2.5).

Definition 2.8 (tangent and cotangent function)

The tangent function is defined by

tan(x) =
sin(x)

cos(x)
, x /∈

{
. . . ,−3π

2
,−π

2
,
π

2
,
3π

2
,
5π

2
, . . .

}
=

{
(2k + 1)π

2
: k ∈ Z

}
.

All real numbers of the form (2k + 1)π/2, where k ∈ Z, are excluded from the

domain of the tangent function, because at these points the cosine function in the

denominator is zero.

The cotangent function is defined by

cot(x) =
cos(x)

sin(x)
, x /∈ {. . . ,−3π,−2π,−π, 0, π, 2π, 3π, . . .} = {k π : k ∈ Z} .

All real numbers of the form kπ, where k ∈ Z, are excluded from the domain of the

cotangent function, because at these points the sine function in the denominator

is zero.



2. Classical Functions 27

Remark 2.9 (geometric interpretation of the tangent function)

From the similarities of the triangles in Figure 2.4, we see that in the larger

triangle the side parallel to the side with length sin(φ) has length tan(φ),

because its length a satisfies

a =
a

1
=

sin(φ)

cos(φ)
= tan(φ).

1

1

tan(φ

φ
φ

)cos(φ

)sin(

)

Figure 2.4: Geometric relation of tan(φ) to sin(φ) and cos(φ).

Based on the values of sin(x) and cos(x), we can now plot the tangent function.

Because

lim
x→(2k+1)π/2

cos(x) = 0, k ∈ Z,

and taking into account the signs of sin(x) and cos(x) as we approach (2k + 1)π/2

from below and from above, we find that

lim
x<(2k+1)π/2,
x→(2k+1)π/2

tan(x) = ∞, lim
x>(2k+1)π/2,
x→(2k+1)π/2

tan(x) = −∞, k ∈ Z,

Thus the vertical straight lines through
(
(2k + 1)π/2, 0

)
are asymptotes of tan(x).
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Furthermore we have

tan(0) =
sin(0)

cos(0)
=

0

1
= 0, and tan(π/4) =

sin(π/4)

cos(π/4)
=

1/
√

2

1/
√

2
= 1.

Thus we obtain the plot on the left-hand side in Figure 2.5. Analogous observations

lead to the the plot of the cotangent function on the right-hand side in Figure 2.5.
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Figure 2.5: The graph of tan(x) on the left, and the graph of cot(x) on the right.

It is easily seen that the functions tan(x) and cot(x) are periodic with period π.

Now we list some important and useful properties of the cosine and sine function.

Lemma 2.10 (addition theorems for cos(x) and sin(x))

sin(x + y) = sin(x) cos(y) + sin(y) cos(x),

sin(x − y) = sin(x) cos(y) − sin(y) cos(x),

and

cos(x + y) = cos(x) cos(y) − sin(x) sin(y),

cos(x − y) = cos(x) cos(y) + sin(x) sin(y).
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Lemma 2.11 (half angle formulas for cos(x) and sin(x))

sin(x) + sin(y) = 2 sin

(
1

2
(x + y)

)
cos

(
1

2
(x − y)

)
,

sin(x) − sin(y) = 2 cos

(
1

2
(x + y)

)
sin

(
1

2
(x − y)

)
,

cos(x) + cos(y) = 2 cos

(
1

2
(x + y)

)
cos

(
1

2
(x − y)

)
,

cos(x) − cos(y) = 2 sin

(
1

2
(x + y)

)
sin

(
1

2
(y − x)

)
.

In the next definition, we learn some more properties to classify functions.

Definition 2.12 (even and odd functions)

Let B ⊂ R, and let A ⊂ R be a ‘symmetric set’, that is, if x ∈ A then also

−x ∈ A.

(i) A function f : A → B is called even if f(−x) = f(x) for all x ∈ A.

(ii) A function f : A → B is called odd if f(−x) = −f(x) for all x ∈ A.

We note the ‘symmetric sets’ in R are just mirror symmetric at the x = 0. For

example, the sets R, [−a, a] with a > 0, as well as R \ Z and R \ {k π : k ∈ Z} are

all symmetric sets.

It is actually quite simple to see whether a function is even or odd, once we have

plotted/sketched it. This is explained in the next remark.

Remark 2.13 (deduce from the plot whether a function is even/odd)

• A function f is even if f(x) = f(−x) for all x. This means that the

function has at x and −x the same value. In the plot this means the f(x)

is mirror-symmetric on the y-axis!

• A function f is odd if f(−x) = −f(x) for all x. This means that at −x

the function has the value (−1)f(x). This means that we obtain f(x) for

x < 0 by rotating the graph of f(x) for x ≥ 0 by 180 degree about

the origin!
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Example 2.14 (even and odd functions)

(a) We see from (2.3), that sin(x) is odd and that cos(x) is even.

(b) Since the product of an odd function and an even function is odd (see Exercise

Sheet 2), (a) implies that tan(x) and cot(x) are odd. 2

The functions sin(x), cos(x), tan(x), and cot(x) are called trigonometric func-

tions.

Some particular functions defined with the help of the sine function and the co-

sine function are given their own name: cosec : R \ {(k π : k ∈ Z} → R and

sec : R \ {(2k + 1)π/2 : k ∈ Z} → R are defined by

cosec(x) =
1

sin(x)
, sec(x) =

1

cos(x)
.

Finally, we want to consider the inverse trigonometric functions. None of the

trigonometric functions that we have encountered is one-to-one on R, but all are

one-to-one restricted to suitable subintervals of R.

• cos(x) is one-to-one on any interval [kπ, (k + 1)π], k ∈ Z

• sin(x) is one-to-one on any interval
[

(2k−1)π
2

, (2k+1)π
2

]
, k ∈ Z.

• tan(x) is one-to-one on any interval
(

(2k−1)π
2

, (2k+1)π
2

)
, k ∈ Z.

• cot(x) is one-to-one on any interval (kπ, (k + 1)π), k ∈ Z.

Definition 2.15 (inverse trigonometric functions)

(i) The inverse function cos−1 : [−1, 1] → [0, π] of cos : [0, π] → [−1, 1] is

denoted by cos−1(x) = arccos(x).

(ii) The inverse function sin−1 : [−1, 1] → [−π/2, π/2] of sin : [−π/2, π/2] →
[−1, 1] is denoted by sin−1(x) = arcsin(x).

(iii) The inverse function tan−1 : R → (−π/2, π/2) of tan : (−π/2, π/2) → R is

denoted by tan−1(x) = arctan(x).

(iv) The inverse function cot−1 : R → (0, π) of cot : (0, π) → R is denoted by

cot−1(x) = arcot(x).

Now we plot the graphs of the inverse trigonometric functions. Rather than eval-

uating the functions above at a number of points to plot them, we can plot the
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inverse function f−1 by reflecting the plot of f on the diagonal axis though

the origin given by x = y.
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Figure 2.6: The graph of arccos(x) on the left, and the graph of arcsin(x) on the

right.
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Figure 2.7: The graph of arctan(x) on the left and the graph of arccot(x) on the

right.

Of course, it is also possible to find an inverse function to sin(x) and cos(x) on any

interval where they are one-to-one, but the intervals chosen in Definition 2.15 are

the ones usually considered.
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2.3 Exponential Functions

In this section we will introduce exponential functions. In an expression of the

form

ax, where a ∈ R, and x ∈ R with x > 0,

as defined below, we call x the exponent (or power) and a the base.

Definition 2.16 (integer powers of a real number)

Let a ∈ R and let n be an integer. Then we define

a0 = 1 for all a ∈ R,

and for a positive integer n, an is defined by

an = a × a × . . . × a︸ ︷︷ ︸
n-times

for all a ∈ R.

If n is a negative integer n = −m, with m ∈ N, we define

an = a−m =
1

am
=

1

a × a × . . . × a︸ ︷︷ ︸
m-times

for all a ∈ R \ {0}.

In particular, we have

a−1 =
1

a
.

Example 2.17 (integer powers of a real number)

(a) 23 = 2 × 2 × 2 = 8.

(b) 104 = 10 × 10 × 10 × 10 = 10000.

(c) 2−1 = 1/2 = 0.5.

(d) 10−2 = 1/(10 × 10) = 1/100 = 0.01.

(e) 3−3 = 1/(3 × 3 × 3) = 1/27.

(f) (−2)3 = (−2) × (−2) × (−2) = −8.

(g) (−4)−2 = 1/(−4)2 = 1/[(−4) × (−4)] = 1/16 = 0.0625. 2
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Lemma 2.18 (rules for integer powers)

Let a, b ∈ R, and let n and m be non-zero integers. Then

anm = (an)m = (am)n, (2.6)

and

an+m = an am, an−m = an a−m. (2.7)

Furthermore, we have

(a b)n = an bn.

Proof : We give the proofs only for n > 0 and m > 0. If n ≤ 0 or m ≤ 0, the proofs

are analogously.

(an)m = an × an × . . . × an

︸ ︷︷ ︸
m-times

= a × a × . . . × a︸ ︷︷ ︸
nm-times

= am × am × . . . × am

︸ ︷︷ ︸
n-times

= (am)n,

and

an+m = a × a × . . . × a︸ ︷︷ ︸
(n + m)-times

=
(
a × a × . . . × a︸ ︷︷ ︸

)

n-times

×
(
a × a × . . . × a︸ ︷︷ ︸

)

m-times

= an am

an−m = a × a × . . . × a︸ ︷︷ ︸
(n − m)-times

=
(
a × a × . . . × a︸ ︷︷ ︸

)

n-times

× 1

a × a × . . . × a︸ ︷︷ ︸
m-times

= an a−m,

which verifies the formulas (2.6) and (2.7) for m > 0 and n > 0. Finally, we have

for n > 0

(a b)n = (a b) × (a b) × . . . × (a b)︸ ︷︷ ︸
n-times

=
(
a × a × . . . × a︸ ︷︷ ︸

)

n-times

×
(
b × b × . . . × b︸ ︷︷ ︸

)

n-times

= an bn,

as claimed. 2

This definition is quite intuitive and natural, if we accept that a−n = 1/an for n ∈ N

and a > 0. Now we want to go away from the assumption that the exponent is an

integer, that is, we consider ax with x ∈ R and a ∈ R with a > 0. First we consider

the case that x is a rational number, that is, x ∈ Q.
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Definition 2.19 (nth roots of a non-negative real numbers)

Let a ∈ R be a non-negative real number, and let n be a positive integer. Then

a1/n is defined to be the non-negative real number b such that

bn = a,

that is, the number a1/n is the nth root of a. We sometimes find the notation
n
√

a instead of a1/n.

Example 2.20 (nth roots of a > 0)

(a) 10001/3 = 10, because 103 = 1000.

(b) 21/2 =
√

2, since (
√

2)2 =
√

2 ×
√

2 = 2.

(c) 811/4 = 3, because 34 = 81.

(d) 81/3 = 2, since 23 = 8.

(e) a1/2 =
√

a, because (
√

a)2 =
√

a ×√
a = a.

(f) 01/7 = 0, because 07 = 0. 2

Lemma 2.21 (rules for nth roots)

Let a, b ∈ R be non-negative real numbers and let n and m be a positive integers.

Then

a1/(nm) = (a1/n)1/m = (a1/m)1/n,

and

(a b)1/n = a1/n b1/n.

Lemma 2.21 is a useful tool for working out roots and simplifying their representa-

tion.

Example 2.22 (illustration of Lemma 2.21)

(a) 81/6 = 81/(2×3) = (81/3)1/2, and since 23 = 8, we have

81/6 = (81/3)1/2 = 21/2 =
√

2.

(b) 65611/8 = 65611/(2×4) = (65611/2)1/4, and since 812 = 6561, we have

65611/8 = (65611/2)1/4 = 811/4 = (811/2)1/2 = 91/2 = 3,

where we have use that 92 = 81 and 32 = 9.
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(c) 241/3 = (3 × 8)1/3 = 31/3 81/3 = 31/3 × 2 = 2 × 31/3, where we have used that

23 = 8. 2

Definition 2.23 (fractional powers of a positive real number)

Let a be a positive real number, and let m be any integer and n be a positive

integer. Then am/n is defined by

am/n =
(
a1/n

)m
.

Note that we also have

am/n = (am)1/n,

and thus

(a1/n)m = (am)1/n.

Example 2.24 (fractional powers of positive real numbers)

(a) 2−1/2 = (21/2)−1 = (
√

2)−1 = 1/
√

2.

(b) 93/2 = (91/2)3 = (
√

9)3 = 33 = 27, where we have used 32 = 9.

(c) 1000−4/3 = (10001/3)−4 = 10−4 = 1/104 = 0.0001, where we have used the fact

that 103 = 1000.

(d) (
√

8)−2/3 = (
√

8
1/3

)−2 =
(
(81/2)1/3

)−2
= (81/2×1/3)−2 = (81/6)−2 =

(
(81/3)1/2)−2 =

(21/2)−2 = 2−2/2 = 2−1 = 1/2, where we have used 23 = 8. 2

Lemma 2.18 and Lemma 2.21 imply the following lemma.

Lemma 2.25 (properties of fractional powers of positive real numbers)

Let a, b ∈ R be positive real numbers, and let m and k be any integers, and let n

and ℓ be positive integers. Then

a(mk)/(nℓ) = a(m/n)(k/ℓ) = (am/n)k/ℓ = (ak/ℓ)m/n.

We also have

am/n+k/ℓ = am/n ak/ℓ, am/n−k/ℓ = am/n a−k/ℓ =
am/n

ak/ℓ
,

and

(a b)m/n = am/n bm/n.
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Example 2.26 (fractional powers of positive real numbers)

In this example we will apply the properties stated in Lemma 2.25. to simplify

expressions:

(a) 21/3 22/3 = 21/3+2/3 = 21 = 2.

(b) 503/2 = (2×25)3/2 = 23/2 253/2 = 21+1/2 (251/2)3 = 2×21/2×53 = 2×
√

2×125 =

250
√

2, where we have used 52 = 25.

(c) 85/6 = 81/2+1/3 = 81/2 81/3 = (4 × 2)1/2 2 = 41/2 21/2 2 = 2 × 21/2 × 2 = 4
√

2,

where we have used that 22 = 4 and 23 = 8. 2

To extend the definition of ax to all real exponents x, we use that any positive

irrational number x ∈ R \ Q (for example,
√

2) can be approximated by a sequence

{xn} or rational numbers, that is, xn ∈ Q for all n and limn→∞ xn = x. Then we

can define

ax = lim
n→∞

axn .

All the properties that we have derived for integer and fractional/rational exponents

(see Lemma 2.25) hold now as well, and we can finally define exponential functions.

Theorem 2.27 (properties of real powers of positive real numbers)

Let a and b be positive real numbers, and let x, y ∈ R. Then

axy = (ax)y = (ay)x,

and

ax+y = ax ay, ax−y = ax a−y =
ax

ay
.

Furthermore, we have

(a b)x = ax bx,
(a

b

)x

=
ax

bx
.

Since a > 0 we have that,

ax > 0 for all x ∈ R.

Definition 2.28 (exponential functions)

Let a ∈ R be a positive real number. Any function of the form

f : R → R, f(x) = ax,

is called an exponential function. From Theorem 2.27, ax > 0 for all x ∈ R.
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We note that for a = 1, we have the special case

f(x) = 1x = 1 for all x ∈ R,

that is, we have obtained a constant function.

The exponential function with the Euler’s number e as base is of particular impor-

tance.

Definition 2.29 (exponential function with Euler number e as base)

Euler’s number is defined by

e = lim
n→∞

(
1 +

1

n

)n

= 2.71828 . . . ,

and the exponential function with with base e,

exp : R → R, exp(x) = ex,

is usually referred to as the (natural) exponential function.

We observe that by definition

exp(0) = e0 = 1.

Determining a suitable set of function values of the (natural) exponential function

exp(x) = ex, we get the following plot.
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2
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x
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Figure 2.8: Graph of the (natural) exponential function f(x) = ex.
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We list some properties of the (natural) exponential function:

• The exponential function exp(x) = ex assumes only positive values (and

is thus never zero), that is,

exp(x) = ex > 0 for all x ∈ R.

• exp(x) = ex satisfies

lim
x→−∞

exp(x) = lim
x→−∞

ex = 0 and lim
x→∞

exp(x) = lim
x→∞

ex = ∞.

Thus the x-axis is an asymptote for exp(x) = ex.

• The exponential function exp(x) = ex is strictly monotonically increasing

on R, that is for any x1, x2 ∈ R with x1 < x2, we have ex1 < ex2 .

• Because exp(x) = ex is strictly monotonically increasing on R, the exponential

function exp(x) = ex is one-to-one. Indeed,

ex1 = ex2 ⇒ ex1

ex2
= 1 ⇒ ex1−x2 = 1,

and we know that e0 = 1. Since ex < e0 for x < 0 and e0 < ex for 0 < x

(because exp(x) = ex is strictly monotonically increasing on R), we see that

ex1−x2 = 1 = e0 implies that x1 − x2 = 0, and thus x1 = x2.

• The range of exp(x) = ex is given by exp(R) = (0,∞).

• Euler’s number e is also the value of the infinite sum

1 +
1

1!
+

1

2!
+

1

3!
+ . . . = 1 +

∞∑

k=1

1

k!
.

2.4 Logarithmic Functions

The (natural) exponential function exp : R → R, exp(x) = ex, is one-to-one,

and thus it has an inverse function.

Definition 2.30 (natural logarithm)

The inverse function exp−1 : (0,∞) → R of the (natural) exponential

function exp : R → (0,∞), exp(x) = ex, is called the (natural) logarithm,

denoted by ln : (0,∞) → R. From the properties of the inverse function, the

natural logarithm is defined by the properties

ln
(
exp(x)

)
= ln(ex) = x for all x ∈ R, exp

(
ln(y)

)
= eln(y) = y for all y > 0.
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By either evaluating ln(x) at a suitable set of values of x > 0 or by reflecting the

graph of the function exp(x) = ex on the diagonal x = y, we obtain a plot of the

graph of the natural logarithm.
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Figure 2.9: Graph of the (natural) logarithm ln(x).

We list some basic properties of ln(x):

• From e0 = 1 we see that ln(1) = 0, and we have that

ln(x) > 0 for all x > 1 and ln(x) < 0 for all 0 < x < 1.

• We have

lim
x→∞

ln(x) = ∞ and lim
x>0, x→0

ln(x) = −∞.

Thus the y-axis is an asymptote for ln(x).

• The (natural) logarithm is strictly monotonically increasing on (0,∞),

that is for any x1, x2 ∈ (0,∞) we have

0 < x1 < x2 ⇒ ln(x1) < ln(x2).

• As the inverse function of exp(x) = ex, the (natural) logarithm ln : (0,∞) → R

is one-to-one, and its inverse function is the (natural) exponential function

exp : R → R, exp(x) = ex.
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Furthermore, the (natural) logarithm has the following important properties.

Lemma 2.31 (properties of the (natural) logarithm)

The (natural) logarithm ln : (0,∞) → R satisfies

ln(x y) = ln(x) + ln(y) and ln

(
x

y

)
= ln(x) − ln(y), (2.8)

and

ln(xy) = y ln(x), and ln
(
x1/y

)
=

1

y
ln(x). (2.9)

Proof: The identities follow from the definition of the (natural) logarithm and the

properties of the (natural) exponential function (see Lemma 2.27)

eln(xy) = x y = eln(x) eln(y) = eln(x)+ln(y),

and since the exponential function is one-to-one, we may conclude that the identity

ln(x y) = ln(x) + ln(y) holds. The second property in (2.8) follows analogously. We

have

eln(xy) = xy =
(
eln(x)

)y
= ey ln(x),

and since the exponential function is one-to-one, we can conclude that ln(xy) =

y ln(x). The second property in (2.9) follows analogously. 2

Like the (natural) exponential function any exponential function f : R → R,

f(x) = ax, with a 6= 1, is one-to-one.

Definition 2.32 (logarithm with base a 6= 1)

Let a 6= 1. The logarithm with base a, denoted by loga : (0,∞) → R, is defined

as the inverse function of the function f : R → (0,∞), f(x) = ax, that is, loga

satisfies

loga(a
x) = x for all x ∈ R and aloga(y) = y for all y ∈ (0,∞).

We note that for the base a = e (of the (natural) exponential function), we have

the natural logarithm, that is, loge(y) = ln(y). Thus Definition 2.30 of the natural

logarithm is just a special case of Definition 2.32. We have an analogous lemma to

Lemma 2.31, which can be seen as the counterpart to Lemma 2.27.
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Lemma 2.33 (properties of logarithmic functions)

Let a ∈ R with a > 0 and a 6= 1. The natural logarithm loga : (0,∞) → R

satisfies

loga(x y) = loga(x) + loga(y) and loga

(
x

y

)
= loga(x) − loga(y), (2.10)

and

loga(x
y) = y loga(x), and loga

(
x1/y

)
=

1

y
loga(x). (2.11)

Remark 2.34 (change of base for exponential functions with base a 6= e)

Our knowledge of the properties of exp(x) = ex and ln(x) allows us to analyze

exponential functions with bases a 6= 1 (that differ from e) with a simple ‘change

of the base’. We have

ax =
(
eln(a)

)x
= ex ln(a) = exp

(
x ln(a)

)
.

Since ln(a) > 0 for all a > 1, and ln(a) < 0 for all a < 1, we see that

ax = eln(a) x =

{
e| ln(a)| x if a > 1,

e−| ln(a)| x if a < 1.

For illustration purposes we have plotted f1(x) = 2x and f2(x) = (1/2)x = 2−x in

the left picture in Figure 2.10.

Remark 2.35 (change of base for logarithms with base a 6= e)

Our knowledge of the properties of exp(x) = ex and ln(x) allows us to analyze

logarithms with bases a 6= 1 (that differ from e) with a simple ‘change of the

base’. We have

loga(x) = loga

(
blogb(x)

)
= logb(x) loga(b) = loga(b) logb(x),

and for the special case of b = e we obtain

loga(x) = loga(e) loge(x) = loga(e) ln(x).
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Since

loga(x) is





> 0 if 0 < x < 1 and a < 1,

< 0 if x > 1 and a < 1,

< 0 if 0 < x < 1 and a > 1,

> 0 if x > 1 and a > 1,

we have (note 1 < e)

loga(x) = loga(e) ln(x) =

{ | loga(e)| ln(x) if a > 1,

−| loga(e)| ln(x) if a < 1.

For illustration purposes we have plotted g1(x) = log2(x) and g2(x) = log1/2(x) in

the right picture in Figure 2.10.
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Figure 2.10: Graphs of f1(x) = 2x (blue) and f2(x) = (1/2)x (red) on the left, and

the graphs of g1(x) = log2(x) (blue) and g2(x) = log1/2(x) (red) on the right.

Application 2.36 (Kepler’s third law)

Kepler’s Third Law says that T 2 is proportional to R3, where T is the time

it takes a planet to orbit the sun, and R is its mean distance from the sun:

T 2 ∝ R3,

that is, for some constant K ∈ R, with K > 0,

T 2 = K R3.
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Taking the natural logarithm on both sides gives that

ln(T 2) = ln(K R3) ⇒ 2 ln(T ) = ln(K) + ln(R3) = ln(K) + 3 ln(R).

It follows that

ln(T ) =
ln(K)

2
+

3

2
ln(R),

that is, ln(T ) is an affine linear function

f
(
ln(R)

)
= m ln(R) + c

of ln(R), where m = 3/2 and c = ln(K)/2. Thus a plot of ln(T ) a gainst ln(R),

which Kepler could draw, showed a set of points on a straight line of slope

3/2. That’s how Kepler’s third law was discovered with the help of astronomical

observation. 2

From this example we see that for relations between variables x and y of the form

c1 xp = c2 yq (where c1 and c2 are constants), taking the logarithm on both sides

gives us a straight line, which is easier to draw and analyze than a curve.

2.5 Hyperbolic Functions

The last topic in this chapter are so-called hyperbolic functions.

Definition 2.37 (hyperbolic sine and hyperbolic cosine)

We define the hyperbolic sine sinh : R → R and the hyperbolic cosine

cosh : R → R by

sinh(x) =
ex − e−x

2
and cosh(x) =

ex + e−x

2
.

We observe from the definitions of sinh(x) and cosh(x) that (since limx→∞ e−x = 0)

for large x, sinh(x) ≈ ex/2 and cosh(x) ≈ ex/2. Likewise (since limx→−∞ ex = 0)

for small x, sinh(x) ≈ −e−x/2 and cosh(x) ≈ e−x/2. The hyperbolic sine and the

hyperbolic cosine have the graphs below.

Lemma 2.38 (equation with sinh(x) and cosh(x))

We have that

(
cosh(x)

)2 −
(
sinh(x)

)2
= 1 for all x ∈ R.
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Figure 2.11: The graph of sinh(x) on the left, and the graph of cosh(x) on the right.

Proof: We simplify the the expression on the right-hand side.

cosh2(x) − sinh2(x) =

(
ex + e−x

2

)2

−
(

ex − e−x

2

)2

=
(ex + e−x)

2 − (ex − e−x)
2

4

=
(e2x + 2 + e−2x) − (e2x − 2 + e−2x)

4
= 1,

where we have used the fact that ex e−x = ex−x = e0 = 1. 2

Example 2.39 (sinh(x) is odd and cosh(x) is even)

Show formally that sinh(x) is an odd function and that cosh(x) is an even function.

Solution:

sinh(−x) =
e−x − e−(−x)

2
=

e−x − ex

2
= − ex − e−x

2
= − sinh(x), x ∈ R,

and

cosh(x) =
ex + e−x

2
=

e−x + e−(−x)

2
= cosh(−x), x ∈ R,

as claimed. 2
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The next lemma lists some useful formulas for the functions sinh(x) and cosh(x)

Lemma 2.40 (addition theorems)

We have for all x ∈ R that

sinh(x + y) = sinh(x) cosh(y) + sinh(y) cosh(x),

cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y).

Next we introduce some more hyperbolic functions.

Definition 2.41 (hyperbolic tangent and hyperbolic cotangent function)

The hyperbolic tangent function tanh : R → R and the hyperbolic cotan-

gent function coth : R \ {0} → R are defined by

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
, coth(x) =

cosh(x)

sinh(x)
=

1

tanh(x)
=

ex + e−x

ex − e−x
.

The hyperbolic tangent function tanh(x) and the hyperbolic cotangent function

coth(x) are plotted in Figure 2.12 below.
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Figure 2.12: The graph of tanh(x) on the left and the graph of coth(x) on the right.
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We observe that g(x) = −1 and h(x) = 1 are asymptotes for tanh(x) and coth(x),

because for |x| large we have

tanh(x) =
ex − e−x

ex + e−x
≈ ex

ex
= 1 as x → ∞,

tanh(x) =
ex − e−x

ex + e−x
≈ −e−x

e−x
= −1 as x → −∞

and

coth(x) =
ex + e−x

ex − e−x
≈ ex

ex
= 1 as x → ∞,

cot(x) =
ex + e−x

ex − e−x
≈ e−x

−e−x
= −1 as x → −∞.

You may also encounter the hyperbolic functions cosech : R \ {0} → R, and

sech : R → R, defined by

cosech(x) =
1

sinh(x)
, sech(x) =

1

cosh(x)
.

Finally we want to discuss the inverse hyperbolic functions. From Figures 2.11

and 2.12, it is relatively clear that the functions sinh(x) and tanh(x) are one-to-one

on R, and cosh(x) is one-to-one for x ≥ 0, and likewise for x ≤ 0, but not on all

of R. The hyperbolic cotangent function coth(x) is one-to-one for R \ {0}.

Definition 2.42 (inverse hyperbolic functions)

(i) The inverse function of sinh : R → R is called sinh−1 = arcsinh : R → R.

(ii) The inverse function of cosh : [0,∞) → [1,∞) is called cosh−1 = arccosh :

[1,∞) → [0,∞).

(iii) The inverse function of tanh : R → (−1, 1) is called tanh−1 = arctanh :

(−1, 1) → R.

(iv) The inverse function of coth : R \ {0} → R \ [−1, 1] is called coth−1 =

arccoth : R \ [−1, 1] → R \ {0}.

We plot the inverse hyperbolic functions in Figures 2.13 and 2.14. Their proper-

ties and graphs can easily by derived from the properties of the functions sinh(x),

cosh(x), tanh(x), and coth(x). For example, we know that g(x) = −1 and h(x) = 1

are asymptotes for tanh(x) and coth(x). Therefore, we know that the vertical line
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through (−1, 0) and the vertical line through (1, 0) are asymptotes of arctanh(x)

and arccoth(x).
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Figure 2.13: The graph of arcsinh(x) on the left, and the graph of arccosh(x) on the

right.
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Figure 2.14: The graph of arctanh(x) on the left and the graph of arccoth(x) on the

right.
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Example 2.43 (representation of the inverse function of sinh(x))

Find an explicit representation of arcsinh(x).

Solution: We set sinh(x) = y and solve for x.

sinh(x) =
ex − e−x

2
= y ⇒ ex − e−x = 2 y

and after replacing z = ex, we get

z − 1

z
= 2 y ⇒ z2 − 1 = 2 y z ⇒ z2 − 2 y z − 1 = 0

⇒ (z − y)2 − (1 + y2) = 0 ⇒
(
z − y +

√
1 + y2

)(
z − y −

√
1 + y2

)
= 0

⇒ z = y ±
√

1 + y2.

Thus we see that

ex = y ±
√

1 + y2,

and since ex > 0 and
√

1 + y2 ≥
√

y2 = y, we have y −
√

1 + y2 < y − y = 0 and

we can rule out the solution with the minus sign. Thus

ex = y+
√

1 + y2 ⇒ x = ln
(
y+
√

1 + y2
)

⇒ arcsinh(y) = ln
(
y+
√

1 + y2
)
,

and we have obtained a representation of arcsin(x) in terms of other classical func-

tions. 2



Chapter 3

Differentiation

In this chapter we learn more properties of functions, namely continuity and differ-

entiability. In Section 3.1, we briefly discuss continuity. If a function is continuous,

then its graph is one ‘continuous’ curve. The functions that you will encounter in

physics will mostly be continuous, but you may occasionally encounter functions

with jumps or possibly with a singularity. Most of the functions that we discuss

in this class will be continuous and even much smoother than just continuous. In

Section 3.2, we introduce the derivative of a smooth enough function, and we dis-

cuss its geometric interpretation. In Section 3.3 we will learn the derivatives

of most of the classical functions from Chapter 2. In Section 3.4, 3.5, and 3.6, we

learn rules/techniques for computing derivatives, most notably, the product rule,

the quotient rule, and the chain rule.

Functions and derivatives play a fundamental role in physical sciences. We will

encounter two applications from physics in this chapter to illustrate this.

The first application is the motion of a car along a straight line as a function of

the time. The first derivative describes the velocity of the car, and the second

derivative describes the acceleration of the car.

The second application is the radioactive decay of radioactive materials such as

uranium. This can be described by a very simple (ordinary) differential equa-

tion that we will solve by ‘inspection’/guessing.

Intuitively differential equations are equations that express relations between an

unknown function and some of its derivatives, and they arise in almost all areas of

physics and technical processes. The aim is to solve the equation, that is, to find

the unknown function that describes the physical/technical process.

49
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For example, electro-magnetic phenomena are descried by the Maxwell equa-

tions (a system of partial differential equations) which describe the interrelation-

ship between electric field, magnetic field, electric charge, and electric current. The

Navier-Stokes equations describe the motion of fluid substances such as

liquids and gases. For example, they are used to model weather, ocean cur-

rents, water flow in a pipe, and the flow around an airfoil (wing). But also

much simpler phenomena such as the oscillation of the strings of a guitar or

the vibration of the membrane of a drum are described by a partial differen-

tial equation, the so-called wave equation. The temperature distribution in a

metal bar is described by a partial differential equation, the so-called heat equa-

tion. Population dynamics can also be modeled with a differential equation.

The great importance of (partial and ordinary) differential equations for the descrip-

tion of technical processes in engineering, physics, and other sciences, motivates why

we will devote a substantial part of this course to the discussion of functions and

how to analyze, differentiate, and integrate them. This knowledge is a prerequisite

for learning later-on how to describe and model technical processes with the

help of functions, differential equations, and other mathematical tools.

3.1 Continuity

We briefly discuss the notion of continuity of a function which means that the

graph of the function is a ‘continuous curve’.

Definition 3.1 (continuous function)

Let A, B ⊂ R. A function in f : A → B is continuous at the point x0 ∈ A if

we have that

lim
x∈A, x→x0

f(x) = f(x0).

The function f is continuous on A, if it is continuous at all x0 ∈ A. If a

function f is not continuous at a point x0 ∈ A then we also say that f is

discontinuous at x0.

We can easily see from the graph of a function if the function is continuous. If

f : A → B it is continuous on its domain A, then the graph of f is one ‘continuous’

connected curve. On the other hand, if the graph of f breaks of at some point and

continues at another, then the function is not continuous at the point where this

‘jump’ occurs. A function f is continuous at x0 ∈ A if the graph is continuous in
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a neighborhood of x0, that is, we can follow the graph starting from (x0, f(x0)) in

both directions (for increasing x and for declining x) for a short distance. This is

illustrated in Figure 3.1.

x

y

f(x)

x

y

x 0

f(x)

Figure 3.1: The function on the left is continuous everywhere. The function on the

right is discontinuous at x = x0, because the function has a jump.

We will not go into rigorously proving whether a function is continuous or not, but

you should be able to determine from the graph whether the function is continuous

at all points, and if not at which point the function is discontinuous.

All the classical functions that we encountered in the previous chapter are continuous

and are, in fact, much smoother than just continuous.

The function that you encounter in physics will usually be either continuous, or they

may have a number of jumps, or even a singularity (that is, a point x0 at which

limx→x0
|f(x)| = ∞).

Example 3.2 (continuous and discontinuous functions)

(a) The functions sin(x), cos(x), and ex are continuous on R.

(b) Affine linear functions

f : R → R, f(x) = mx + c,

and quadratic functions

f : R → R, f(x) = a x2 + b x + c,
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and, more general, all polynomials are continuous on R.

(c) The natural logarithm ln : (0,∞) → R is continuous on (0,∞).

(d) The function f : R → R, defined by

f(x) =





−1 if x < 0,

0 if x = 0,

1 if x > 0,

(3.1)

is discontinuous at x = 0, but continuous at all x ∈ R \ {0}. This can be seen

from the graph in Figure 3.2. In Figure 3.2, the empty dots ◦ indicate that the

value at x = 0 is not given by −1 or 1, whereas the filled dot • indicates that

the function value at x = 0 is given by y = 0. 2

−1

1

0

0

y

x

Figure 3.2: Graph of f : R → R defined by (3.1).

3.2 Differentiation

The derivative of a function f at a point x0 is an accurate way of measuring the

rate of change at this point. By the rate of change we mean here how much f(x)

grows or declines if x gets smaller than x0 and larger than x0, respectively.

A basic way to measure how a function f : A → B changes as x gets larger than

x0 is to consider the change in the y-direction ∆y = f(x0 + ∆x) − f(x0) with a

small positive ∆x. Since we want the rate of change of f at x0 relative to the
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corresponding distance on the x-axis, an approximation of the rate of change

of f at x0 is given by

f(x0 + ∆x) − f(x0)

(x0 + ∆x) − x0

=
f(x0 + ∆x) − f(x0)

∆x
=

∆y

∆x
. (3.2)

In fact, ∆y/∆x is the average rate of change of f over the interval [x0, x0+∆x]

= {x ∈ R : x0 ≤ x ≤ x0 + ∆x}. See Figure 3.3 for an illustration.

Likewise we can approximate the rate of change of f(x) at x0 as x declines by

f(x0) − f(x0 − ∆x)

x0 − (x0 − ∆x)
=

f(x0) − f(x0 − ∆x)

∆x
=

∆y

∆x
. (3.3)

The expression (3.3) is the average rate of change of f over the interval

[x0 − ∆x, x0] = {x ∈ R : x0 − ∆x ≤ x ≤ x0}.

The expressions (3.2) and (3.3) are called a Newton quotients or difference

quotients of the function f .

x

y

x0

0)

0+∆xx

f(x 0+∆ x)

x

∆

∆

y
f(x

Figure 3.3: Approximation of the rate of change by the Newton quotient.

Off course we can do better than to just get an approximation of the rate of

change of f at x0! The idea is to let ∆x in (3.2) and (3.3) shrink to zero, that is,

we take the limit for ∆x → 0.

rate of change of f at x0 = lim
∆x→0

f(x0 + ∆x) − f(x0)

∆x
= lim

∆x→0

f(x0) − f(x0 − ∆x)

∆x
.
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That it does make no difference whether we approach x0 from the left or

from the right is only true if our function f is ‘smooth enough’. Most functions

that you encounter in physics are such smooth enough functions. ‘Smooth enough’

means more than continuous.

These heuristic observations lead to the definition of the derivative.

Definition 3.3 (derivative)

Let A, B ⊂ R. The derivative df(x0)/dx = f ′(x0) of a (smooth enough) function

f : A → B at the point x0 ∈ A is defined by

df(x0)

dx
= f ′(x0) = lim

h→0

f(x0 + h) − f(x0)

h
,

where h can be positive or negative, subject to x0 + h ∈ A. The value f ′(x0)

measures the rate of change of the function f at the point x = x0. The rate of

change is the slope of the tangent of the graph at the point (x0, f(x0)).

x

y

x

1

f ’(x 0

0

0) )f(x

Figure 3.4: The derivative value f ′(x0) is the rate of change of the function f at

x = x0, and the tangent of the graph at (x0, f(x0)) has the slope f ′(x0).

The function f ′ : A → R, defined by mapping x ∈ A onto the derivative f ′(x) at

the point x, is called the derivative of f .

Note that this definition just formalizes our considerations above with h = ±∆x

and x = x0. The process of determining the derivative of f is called differentiating

the function f .
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It seems plausible that we may repeat the procedure if f is smooth enough to

allow this. And we can do this again and again. This is formalized in the next

definition. The first two derivatives of physical quantities often have a

physical meaning as we will see in Examples 3.11 and 3.12 later in this section.

Definition 3.4 (higher order derivatives)

Let f : A → B be a smooth function. Once we have computed the derivative

f ′ : A → R of f , we can differentiate the derivative again. The derivative of the

(first oder) derivative f ′ : A → R is denoted by f ′′ = d2f/dx2 and is given by

f ′′(x) =
d2f(x)

dx2
=

d

dx

(
df(x)

dx

)
=
(
f ′(x)

)′
,

and we called it the second (order) derivative of f . We can repeat this

process again and again, and so we can differentiate f m-times, and we denote

the resulting function by

f (m)(x) =
dmf

dxm
=

d

dx

(
f (m−1)(x)

)
,

and call it the mth (order) derivative of f . With this notation f (1) = f ′ and

f (2) = f ′′.

We give some examples.

Example 3.5 (derivative of a constant function)

The constant function f : R → R, f(x) = c, with an arbitrary constant c ∈ R, has

the derivative f ′(x) = 0. Indeed, for any x ∈ R

f(x + h) − f(x)

h
=

c − c

h
=

0

h
= 0 ⇒ f ′(x) = lim

h→0

f(x + h) − f(x)

h
= lim

h→0
0 = 0,

as claimed. 2

Example 3.6 (1st and 2nd order derivative of an affine linear function)

Consider the affine linear function f : R → R, defined by

f(x) = mx + c,

whose graph is a straight line with slope m which intersects the y-axis at y = c.

Because we know that the slope of the straight line is m, we expect that f ′(x) = m.

Indeed, we have that

f(x + h) − f(x)

h
=

[m (x + h) + c] − [mx + c]

h
=

mh

h
= m.
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Thus we find that

f ′(x) = lim
h→0

f(x + h) − f(x)

h
= lim

h→0
m = m,

as expected. The second order derivative f ′′(x) is given by f ′′(x) = 0 because

we know from the previous example that the derivative of the constant function

f ′(x) = m is the zero function. 2

An important and useful result for analyzing functions is the following lemma, which

establishes a relation between the sign of the derivative and the growth of the

function. Since f ′(x) is the slope of the tangent of the graph at (x, f(x)), the

result below is not particularly surprising.

Lemma 3.7 (derivative and growth of a function)

Let A, B ⊂ R, and let [a, b] be a subinterval of A. Let f : A → B be a sufficiently

smooth function. Then the following statements hold true:

(i) The function f is strictly monotonically increasing on [a, b] if

f ′(x) > 0 for all x ∈ (a, b).

(ii) The function f is monotonically increasing on [a, b] if

f ′(x) ≥ 0 for all x ∈ (a, b).

(iii) The function f is strictly monotonically decreasing on [a, b] if

f ′(x) < 0 for all x ∈ (a, b).

(iv) The function f is smonotonically decreasing on [a, b] if

f ′(x) ≤ 0 for all x ∈ (a, b).

We illustrate Lemma 3.7 for the functions from Examples 3.5 and 3.6.

Example 3.8 (growth of a constant function)

In Example 3.5, we saw that the constant function f : R → R, f(x) = c, with an

arbitrary constant c ∈ R, has the derivative f ′(x) = 0. Since f ′(x) = 0, we know

from Lemma 3.7 that the function f(x) = c is both monotonically increasing on R

and monotonically decreasing on R. 2
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Example 3.9 (growth of an affine linear function)

In Example 3.6, we saw that an affine linear function f : R → R, defined by

f(x) = mx + c, has the derivative f ′(x) = m. From Lemma 3.7, we know that f is

strictly monotonically increasing on R if m > 0, and that f is strictly monotonically

decreasing on R if m < 0. 2

Next we want to compute the first and second order derivative of a quadratic func-

tion.

Example 3.10 (1st and 2nd order derivative of a quadratic function)

Consider the quadratic function f : R → R, defined by

f(x) = a x2 + b x + c.

Then we have

f(x + h) − f(x) =
[
a (x + h)2 + b (x + h) + c

]
−
[
a x2 + b x + c

]

=
[
a x2 + 2 a h x + a h2 + b x + b h + c

]
−
[
a x2 + b x + c

]

= 2 a h x + a h2 + b h.

Thus we see that

f(x + h) − f(x)

h
=

2 a h x + a h2 + b h

h
= 2 a x + a h + b.

Now we let h → 0, and obtain

f ′(x) = lim
h→0

f(x + h) − f(x)

h
= lim

h→0
(2 a x + a h + b) = 2 a x + b.

Thus f ′(x) = 2 a x + b. From Example 3.6, we know that

f ′′(x) =
d

dx

(
2 a x + b

)
= 2 a. 2

To round of this section we will discuss the application of motion in time along

a straight line.

Application 3.11 (velocity and acceleration)

Think of a car moving in a straight line. Then the velocity of the car is defined to

be the rate of change of position. Let s = s(t) denote the position at time t,

and in our coordinate plane the horizontal axis measures the time t and the vertical

axis the position s. Then the average velocity of the car moving from position
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s(t1) to s(t2) during the time interval [t1, t2] = {t ∈ R : t1 ≤ t ≤ t2} is the quotient

of the displacement ∆s = s(t2) − s(t1) divided by the time difference ∆t = t2 − t1,

that is,

v =
∆s

∆t
=

s(t2) − s(t1)

t2 − t1
.

By shrinking the length of the time interval to zero, we find that the velocity v(t)

at the time t is given by the derivative ds(t)/dt. We summarize:

s(t) = position at time t, v(t) =
ds(t)

dt
= velocity at time t. (3.4)

When the driver starts his car, then he has to accelerate at the beginning to reach

the desired velocity. The average acceleration a over a time interval [t1, t2] is

defined as

average acceleration =
velocity change

time taken for change
=

∆v

∆t
=

v(t2) − v(t1)

t2 − t1
.

To get the acceleration a(t) at the time t, we shrink the time interval in the

quotient above, that is, ∆t → 0, and obtain a(t) = dv(t)/dt. Thus

v(t) = velocity at time t, a(t) =
dv(t)

dt
= acceleration at time t. (3.5)

We summarize what we have learned: If s : [0, T ] → R describes a motion during

the time interval [0, T ] = {t ∈ R : 0 ≤ t ≤ T}, then we have

s(t) = position at time t,

v(t) =
ds(t)

dt
= velocity at time t,

a(t) =
dv(t)

dt
=

d2s(t)

dt2
= acceleration at time t,

where d2s(t)/dt2 means that we take two times the derivative.

Application 3.12 (motion with uniform acceleration)

As in the previous example let s : [0, T ] → R denote the motion of a car along a

straight line during the time interval [0, T ], and let v(t) denote the velocity of the

car during the time interval [0, T ]. If we have that

v(t) − v(t0)

t − t0
= a0 for all t, t0 ∈ [0, T ] and with some constant a0,

then we say the the car has the uniform acceleration a0. From (3.6), we find

v(t) = v(t0) + a0 (t − t0) for all t ∈ [0, T ], (3.6)
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that is, the velocity is an affine linear function. The distance traveled over

the time interval [t0, t] (where we from now assume that t > t0) is given by

s(t) − s(t0) = average velocity × (t − t0) =
v(t) + v(t0)

2
(t − t0).

That the formula for the average velocity over the time interval [t0, t] is simply the

mean value
[
v(t)+v(t0)

]
/2 of v(t0) and v(t) is due to the fact that the velocity (3.6)

is an affine linear funciton. Substituting v(t) by (3.6) yields

s(t)− s(t0) =
1

2

[(
v(t0) + a0 (t − t0)

)
+ v(t0)

]
(t− t0) = v(t0) (t− t0) +

1

2
a0 (t− t0)

2,

and thus we see that

s(t) = s(t0) + v(t0) (t − t0) +
1

2
a0 (t − t0)

2.

Thus the motion along a straight line with uniform acceleration is a

quadratic function.

In the last section of this chapter we will encounter another application: radioactive

decay of a radioactive material over time.

3.3 Standard Derivatives

You need to know the derivatives listed in Table 3.1 below of your head. They will

not be provided in the final exam!

We will not derive all the derivatives in Table 3.1 below, but we later explicitly

compute the derivatives of tan(x), cosh(x), and sinh(x), based on the knowledge of

the derivatives of cos(x), sin(x), and ex.

It is important to note that the natural exponential function exp(x) = ex is the

only function with the property that f ′(x) = f(x) for all x.

The functions whose derivatives are listed in Table 3.1, will often be the building

blocks of more complicated functions. The elementary properties of the derivative,

the product rule, the quotient rule, and the chain rule, will allow us to differentiate

sums, differences, products, quotients, and compositions two or more functions from

those listed in Table 3.1.
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Function f(x) Derivative f ′(x)

c = constant 0

xp p xp−1

ex ex

ln(x)
1

x

sin(x) cos(x)

cos(x) − sin(x)

tan(x)
1

(
cos(x)

)2 =
(
sec(x)

)2

cot(x) − 1
(
sin(x)

)2 = −
(
cosec(x)

)2

sinh(x) cosh(x)

cosh(x) sinh(x)

tanh(x)
1

(
cosh(x)

)2 =
(
sech(x)

)2

coth(x) − 1
(
sinh(x)

)2 = −
(
cosech(x)

)2

Table 3.1: Important derivatives.

3.4 Elementary Rules for Derivatives

The most simple form of a composite function is the sum (or difference) of two

functions. If we know the derivatives of the two individual functions then we can

easily compute the derivative of the sum/difference. This is stated in the next

lemma.
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Lemma 3.13 (derivative of sum or difference of two functions)

The derivative of the sum (g + f)(x) = f(x) + g(x) of two smooth enough

functions f(x) and g(x) is given by the sum of the derivatives, that is,

(f + g)′(x) =
(
f(x) + g(x)

)′
= f ′(x) + g′(x). (3.7)

For the derivative of the difference (g − f)(x) = f(x) − g(x) of two smooth

enough functions f(x) and g(x) we have analogously

(f − g)′(x) =
(
f(x) − g(x)

)′
= f ′(x) − g′(x). (3.8)

We observe here that the rules (3.7) and (3.8) extend obviously to the sum/difference

of more than two functions. For example,

(
f(x) + g(x) − h(x)

)′
= f ′(x) + g′(x) − h′(x).

Example 3.14 (derivatives of sums and differences)

(a)
(
sin(x) + x2 + x

)′
=
(
sin(x)

)′
+ (x2)′ + (x)′ = cos(x) + 2 x + 1;

(b)
(
tan(x) + ex

)′
=
(
tan(x)

)′
+ (ex)′ =

(
cos(x)

)−2
+ ex =

(
sec(x)

)2
+ ex;

(c)
(
cos(x) + 3

)′
=
(
cos(x)

)′
+ (3)′ = − sin(x) + 0 = − sin(x). 2

3.5 Product Rule and Quotient Rule

The product of two functions can be easily differentiated if we know the derivatives

of the two individual functions.

Lemma 3.15 (product rule)

The derivative of the product f(x) g(x) of two smooth enough functions f(x)

and g(x) is given by

d

dx

(
f(x) g(x)

)
=
(
f(x) g(x)

)′
= f ′(x) g(x) + f(x) g′(x).

We give some examples.
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Example 3.16 (derivative of the product of functions)

(a)
(
sin(x) cos(x)

)′
=
(
sin(x)

)′
cos(x) + sin(x)

(
cos(x)

)′
=
(
cos(x)

)2 −
(
sin(x)

)2
,

where we have used that
(
sin(x)

)′
= cos(x) and

(
cos(x)

)′
= − sin(x).

(b) (x ex)′ = (x)′ ex + x (ex)′ = 1 ex + x ex = (1 + x) ex, where we have used that

(ex)′ = ex and (x)′ = 1.

(c) (c f(x))′ = (c)′ f(x) + c f ′(x) = 0 f(x) + c f ′(x) = c f ′(x), where c ∈ R is a

constant. 2

From the Example 3.16 (c), we see the following:

Corollary 3.17 (product of function and constant)

The derivative of the product c f(x) of a constant c ∈ R and a function f(x) is

given by (
c f(x)

)′
= c f ′(x).

We also have a rule for differentiating the quotient of two functions.

Lemma 3.18 (quotient rule)

The derivative of the quotient f(x)/g(x) of two smooth enough functions

f(x) and g(x), where g(x) 6= 0, is given by

d

dx

(
f(x)

g(x)

)
=

(
f(x)

g(x)

)′
=

f ′(x) g(x) − g′(x) f(x)
(
g(x)

)2 .

As an example we will compute the derivative of the tangent function tan(x) making

only use of
(
sin(x)

)′
= cos(x) and

(
cos(x)

)′
= − sin(x).

Example 3.19 (derivative of the tangent function)

To differentiate h(x) = tan(x), we remember its definition as a quotient of the sine

and cosine function

tan(x) =
sin(x)

cos(x)
,

and then use the quotient rule with f(x) = sin(x), f ′(x) = cos(x), and g(x) = cos(x),

g′(x) = − sin(x). Then

(
tan(x)

)′
=

d

dx

(
sin(x)

cos(x)

)
=

f ′(x) g(x) − g′(x) f(x)
(
g(x)

)2
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=
cos(x) cos(x) −

(
− sin(x)

)
sin(x)

(
cos(x)

)2

=

(
cos(x)

)2
+
(
sin(x)

)2
(
cos(x)

)2

=
1

(
cos(x)

)2 = sec2(x),

where we have used
(
cos(x)

)2
+
(
sin(x)

)2
= 1 in the second last step. 2

Example 3.20 (differentiation with the quotient rule)

The derivative of the function

h(x) =
ex

ex + 1

can be computed with the quotient rule. We have f(x) = ex, f ′(x) = ex, and

g(x) = ex + 1, g′(x) = ex, and thus we find

h′(x) =

(
ex

ex + 1

)′
=

f ′(x) g(x) − g′(x) f(x)
(
g(x)

)2 =
ex (ex + 1) − ex ex

(ex + 1)2
=

ex

(ex + 1)2
. 2

We discus another example.

Example 3.21 (derivative of 1/g(x))

Assume g(x) 6= 0. Then find the derivative of the function

h(x) =
1

g(x)
.

Solution: This can be done with the quotient rule with f(x) = 1. Since f ′(x) = 0,

we find from the quotient rule that

h′(x) =

(
1

g(x)

)′
=

0 × g(x) − g′(x) × 1
(
g(x)

)2 . =
−g′(x)
(
g(x)

)2 . 2

From the last example we obtain the following useful corollary.

Corollary 3.22 (special case of quotient rule)

The derivative of the quotient 1/g(x), where g(x) 6= 0, is given by

d

dx

(
1

g(x)

)
=

(
1

g(x)

)′
=

−g′(x)
(
g(x)

)2 .
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3.6 Chain Rule

With the rules learnt so far we can differentiate sums, products, and quotients of

the functions in Table 3.1. But how do we differentiate functions such as sin(x2) or

(sin(x) + 1)3/2 or ecos(x) that cannot be written as sums, products, or quotients of

functions whose derivatives we know?

To do this we need another rule, the so-called chain rule. We observe that all the

mentioned functions are compositions of two functions or, in other words, ‘func-

tions of other functions’. We say that a function h : A → C is a composition

of two functions f : B → C and g : A → B, if we can write h as

h(x) = f
(
g(x)

)
,

that is, the variable y of f(y) is replaced by y = g(x). Indeed, we have that

sin(x2) = f
(
g(x)

)
, with f(y) = sin(y), g(x) = x2; (3.9)

(
sin(x) + 1

)3/2
= f

(
g(x)

)
, with f(y) = y3/2, g(x) = sin(x) + 1; (3.10)

ecos x = f
(
g(x)

)
, with f(y) = ey, g(x) = cos(x). (3.11)

Note that f
(
g(x)

)
is not the same as g

(
f(x)

)
! For example, for g(x) = x2 and

f(x) = sin(x)

f
(
g(x)

)
= sin(x2) 6= g

(
f(x)

)
=
(
sin(x)

)2
.

The chain rule tells us how to differentiate the composition f
(
g(x)

)
, if we know the

derivatives of f(y) and g(x).

Lemma 3.23 (chain rule)

Let A, B, C ⊂ R and let f : B → C and g : A → B be two sufficiently smooth

functions. Then

d

dx

[
f
(
g(x)

)]
=
[
f
(
g(x)

)]′
= f ′(g(x)

)
g′(x).

Example 3.24 (differentiation with chain rule)

We want to use the chain rule to differentiate the composite functions h given by

(3.9), (3.10), and (3.11). The first thing to do is to work out the composition as

h(x) = f
(
g(x)

)
. For the functions (3.9), (3.10), and (3.11) we have already done

this.
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(a) From (3.9), the function h(x) = sin(x2), has the composition h(x) = f
(
g(x)

)

with f(y) = sin(y) and g(x) = x2. We have f ′(y) = cos(y) and g′(x) = 2 x, and

the chain rule gives

d

dx
sin(x2) = f ′(g(x)

)
g′(x) = f ′(x2) 2 x = cos(x2) 2 x = 2 x cos(x2).

(b) From (3.10), the function h(x) =
(
sin(x) + 1

)3/2
, has the composition h(x) =

f
(
g(x)

)
with f(y) = y3/2 and g(x) = sin(x) + 1. We have f ′(y) = (3/2) y1/2 and

g′(x) = cos(x), and from the chain rule

d

dx

(
sin(x)+1

)3/2
= f ′(g(x)

)
g′(x) = f ′( sin(x)+1

)
cos(x) =

3

2
cos(x)

(
sin(x)+1

)1/2
.

(c) From (3.10), the function h(x) = ecos(x), has the composition h(x) = f
(
g(x)

)

with f(y) = ey and g(x) = cos(x). We have f ′(y) = ey and g′(x) = − sin(x),

and from the chain rule

d

dx
ecos(x) = f ′(g(x)

)
g′(x)

= f ′( cos(x)
) (

− sin(x)
)

= ecos(x)
(
− sin(x)

)
= − sin(x) ecos(x). 2

We will look at some more examples. Unlike before, when we have first substituted

the expressions for g(x) and g′(x) into f ′(g(x)
)
g′(x), and subsequently substituted

the expression for f ′(y) one step later, we will from now on do both substitutions

at once.

Example 3.25 (differentiation with the chain rule)

Differentiate the functions

(a) h(x) = ln
(
cos(x)

)
, (b) h(x) = e−x2

.

(a) The function h(x) = ln
(
cos(x)

)
is the composition h(x) = f(g(x)) with f(y) =

ln(y) and g(x) = cos(x). We have f ′(y) = 1/y and g′(x) = − sin(x), and the

chain rule yields that

d

dx
ln
(
cos(x)

)
= f ′(g(x)

)
g′(x) =

1

cos(x)

(
− sin(x)

)
= − sin(x)

cos(x)
= − tan(x).

(b) The function h(x) = e−x2
is the composition h(x) = f(g(x)) with f(y) = ey and

g(x) = −x2. We have f ′(y) = ey and g′(x) = −2 x, giving that

d(e−x2
)

dx
= f ′(g(x)

)
g′(x) = e−x2

(−2 x) = −2 x e−x2

. 2
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With the help of the chain rule we can find a rule for finding the derivative

of the inverse function f−1 of a one-to-one function f if we know the derivative

of f . We remark here that we will usually denote the variable of the inverse

function f−1 by y and the variable of the function f by x. This is motivated

by the fact that we set y = f(x) and solve for x, that is, find x = f−1(y), if we want

to find the inverse function. It also helps to avoid confusion and mistakes if we give

the variable of the function f and the variable of its inverse function f−1 different

names.

Corollary 3.26 (derivative of the inverse function)

Let A, B ⊂ R. Let f : A → B be a smooth enough one-to-one function, and let

f−1 : f(A) → A be the inverse function of f . Then we have that

df−1(y)

dy
= (f−1)′(y) =

1

f ′
(
f−1(y)

) .

Proof: From the properties of the inverse function, we have that

f
(
f−1(y)

)
= y. (3.12)

We can apply the chain rule to differentiate h(y) = f
(
f−1(y)

)
, and we obtain from

the chain rule

h′(y) =
[
f
(
f−1(y)

)]′
= f ′(f−1(y)

)
(f−1)′(y). (3.13)

However, we also have from (3.12) that h(y) = y and thus h′(y) = 1. Substituting

h′(y) = 1 into (3.13) yields

1 = f ′(f−1(y)
)
(f−1)′(y) ⇒ (f−1)′(y) =

1

f ′
(
f−1(y)

) ,

where we have divided by f ′(f−1(y)
)

to get the second formula. 2

Example 3.27 (derivative of the natural logarithm)

We want to derive that
(
ln(y)

)′
= 1/y with the help of Corollary 3.26. By definition,

the natural logarithm ln : (0,∞) → R is the inverse function of exp(x) = ex, and

thus eln(y) = y and ln(ex) = x. Therefore we can apply Corollary 3.26 with f(x) = ex

and and f−1(y) = ln(y). Since f ′(x) = (ex)′ = ex, we have

(
ln(y)

)′
= (f−1)′(y) =

1

f ′
(
f−1(y)

) =
1

f ′
(
ln(y)

) =
1

eln(y)
=

1

y
. 2
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Remark 3.28 ((f−1)−1 = f)

We note here that the equations

f
(
f−1(y)

)
= y for all y ∈ f(A) and f−1

(
f(x)

)
= x for all x ∈ A.

for a one-to-one function f : A → B and its inverse function f−1 : f(A) → A, also

imply that the inverse function (f−1)−1 of f−1 is given by f . Thus we could

also have worked out that (ex)′ = ex based on the knowledge that
(
ln(y)

)′
= 1/y.

Example 3.29 (derivative of arcsin(x))

In the previous chapter we have introduced the function arcsin : [−1, 1] → [π/2, π/2]

as the inverse of the function sin : [−π/2, π/2] → [−1, 1]. Now we want to compute

the derivative of the arcsin(y) with the help of Corollary 3.26.

Since (sin(x))′ = cos(x), we have

(
arcsin(y)

)′
= (f−1)′(y) =

1

f ′
(
f−1(y)

) =
1

cos
(
arcsin(y)

) . (3.14)

To simplify the denominator cos
(
arcsin(y)

)
further, we remember that

[
sin(x)

]2
+
[
cos(x)

]2
= 1 ⇒ cos(x) =

√
1 −

[
sin(x)

]2
,

where we get only the positive root +
√

1 −
[
sin(x)

]2
of
[
cos(x)

]2
= 1 −

[
sin(x)

]2

because cos(x) ≥ 0 for all x ∈ [−π/2, π/2]. Substituting x = arcsin(y) into the last

formula yields

cos
(
arcsin(y)

)
=

√
1 −

[
sin
(
arcsin(y)

)]2
=
√

1 − y2, (3.15)

where we used sin
(
arcsin(y)

)
= y since arcsin(y) is the inverse function of sin(x).

Substituting (3.15) into (3.14), we obtain

d

dy
arcsin(y) =

(
arcsin(y)

)′
=

1

cos
(
arcsin(y)

) =
1√

1 − y2
. 2

Application 3.30 (radioactive decay)

Radioactivity is caused by the disintegration of the nuclei of atoms of the radioactive

material. The disintegration obeys the law of chance, that is, we do not know

which individual atom disintegrates next. However, we know that the number of

disintegrating atoms per second is proportional to the number of atoms.
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Thus, if N(t) denotes the number of atoms at the time t, then dN(t)/dt is the

disintegration rate of the atoms, and we have

dN(t)

dt
= −λ N(t), (3.16)

where λ > 0 is the constant of proportionality. We have a minus sign on the right-

hand side, because the number of atoms declines over time. The equation (3.16) is

a differential equation and gives a relation between N(t) and its first derivative

dN(t)/dt. What we clearly would like to know is the unknown function N(t).

If we can find the unknown function N(t) then we have solved the differential

equation.

For the differential equation (3.16), we can ‘guess’ the solution by inspection. We

know that the only function that satisfies f ′(x) = f(x) is the natural exponential

function exp(x) = ex. Compared to f ′(x) = f(x), (3.16) has an additional constant

factor on the right-hand side. This leads us to consider g(x) = exp(αx) = eαx for

which we have, from the chain rule,

dg(x)

dx
=

d(eαx)

dx
= α eαx = α g(x).

Thus we predict that (3.16) has the solution

N(t) = N0 e−λt, (3.17)

where N0 is a constant. We differentiate to test our guess and find, from the chain

rule,
dN(t)

dt
=

d

dt

[
N0 e−λt

]
= −λ N0 e−λt = −λ N(t).

Thus (3.17) is indeed a solution to (3.16), and it is possible to show that all solutions

of (3.16) are of the form (3.17).

Now we want to interpret and discuss the solution (3.17). We observe that for t = 0

we have N(0) = N0. Thus the constant N0 is the initial number of atoms of the

radioactive material. As you may know radioactive substances have a half-life,

which is defined as the time T1/2 after which half of the atoms have disintegrated.

In formulas,

N(T1/2) = N0 e−λT1/2 =
N0

2
⇒ e−λT1/2 = 2−1 ⇒ T1/2 =

ln
(
2−1
)

−λ
=

ln(2)

λ
.

Thus the half-life is given by T1/2 = ln(2)/λ, and it can be easily computed if the

constant of proportionality λ is known.
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Finally we will briefly discuss differentiating exponential functions h(x) = ax and

logarithmic functions h(x) = loga(x) with a base a > 0, with a 6= 1 and a 6= e.

Example 3.31 (derivatives of exponential functions)

Compute the first, second, and third (order) derivative of the exponential func-

tion h : R → R, h(x) = ax, where a > 0 and a 6= 1.

Solution: We know from Remark 2.34 in Section 2.3 that

h(x) = ax =
(
eln(a)

)x
= eln(a) x. (3.18)

For h(x) = ax = f
(
g(x)

)
with f(y) = ey, f ′(y) = ey, and g(x) = ln(a) x, g′(x) =

ln(a), the chain rule yields

h′(x) = f ′(g(x)
)
g′(x) = eln(a) x ln(a) = ln(a) ax, (3.19)

where we have used (3.18) in the last step. We observe from (3.19) that

h′(x) =
d(ax)

dx
= ln(a) ax = ln(a) h(x). (3.20)

To find the second derivative of h(x) = ax, we use (3.20) and find

h′′(x) =
dh′(x)

dx
=

d

dx

[
ln(a) h(x)

]
= ln(a) h′(x)

= ln(a)
[
ln(a) h(x)

]
=
[
ln(a)

]2
h(x) =

[
ln(a)

]2
ax, (3.21)

where we have used (3.20) to get from the first line to the second line. To find the

third derivative we proceed analogously and use (3.21) and (3.20).

h(3)(x) =
dh′′(x)

dx
=

d

dx

([
ln(a)

]2
h(x)

)
=
[
ln(a)

]2
h′(x)

=
[
ln(a)

]2 [
ln(a) h(x)

]
=
[
ln(a)

]3
h(x) =

[
ln(a)

]3
ax. (3.22)

Based our knowledge of the first three derivatives (see (3.20), (3.21), and (3.22)),

we suspect that the mth derivative of h(x) = ax is given by

h(m)(x) =
dm(ax)

dxm
=
[
ln(a)

]m
h(x) =

[
ln(a)

]m
ax =

[
ln(a)

]m
eln(a) x,

which is indeed true. 2

Example 3.32 (derivatives of logarithmic functions)

Compute the derivative of the logarithmic function h : (0,∞) → R, h(x) = loga(x),

where a > 0 and a 6= 1.
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Solution: We can compute the derivative in two different ways. Firstly we have

from Remark 2.35 in Section 2.4 that

h(x) = loga(x) = loga(e) ln(x) =
1

ln(a)
ln(x), (3.23)

where loga(e) = 1/ ln(a) follows from 1 = loga(a) = loga(e) ln(a) with division by

ln(a). Differentiating the last expression in (3.23) yields

h′(x) =
d

dx
loga(x) =

d

dx

(
1

ln(a)
ln(x)

)
=

1

ln(a)

1

x
=

1

ln(a) x
.

Alternatively we can use that fact that f−1(y) = loga(y) is the inverse function of

f(x) = ax. Thus we may apply Corollary 3.26, making use of the fact that

f ′(x) = ln(a) ax

from the previous example. Corollary 3.26 yields

d

dy
loga(y) = (f−1)′(y) =

1

f ′
(
f−1(y)

) =
1

ln(a) aloga(y)
=

1

ln(a) y
,

where in the last step aloga(y) = y holds because f−1(y) = loga(y) is the inverse

function of f(x) = ax. 2



Chapter 4

Curves and Functions

In this chapter we will discuss in more detail how to analyze and subsequently

sketch functions. In Chapter 1 we have learned to sketch functions by evaluat-

ing them at some points and using knowledge such as where the function is zero,

has positive or negative values, whether it has asymptotes, and also where it is

(strictly) monotonically increasing or decreasing. In this chapter, we will discuss

more properties of functions, in particular, local and global minima and

maxima, points of inflection, and the curvature of the function. The discus-

sion of these topics will heavily rely on analyzing the first and second (order)

derivative of the function. In some cases we need even higher order derivatives.

We discuss several examples in this chapter to illustrate the new topics. It is essen-

tial that you solve analogous problems from the exercise sheets on your

own, because familiarity with applying the new concepts covered in this chapter

can only be achieved through practice.

4.1 Roots of Functions

The first topic is roots of a function, that is, the points where the function has

the value zero. We have already used roots of functions in Chapter 1 to determine

where the function intersects the x-axis.

Definition 4.1 (roots of a function)

Let A, B ⊂ R. The roots of a function f : A → B are the values x ∈ A at which

f(x) = 0. We find the roots of f by solving f(x) = 0 for x.

71
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Example 4.2 (roots of a function)

(a) The affine linear function f : R → R, f(x) = mx + c, with m 6= 0, intersects the

x-axis at the point(s) satisfying

f(x) = mx + c = 0 ⇒ mx = −c ⇒ x = − c

m
.

Thus the affine linear function has the root x = −c/m.

(b) In Section 1.4, we have seen that the quadratic function f(x) = a x2 + b x + c,

with a 6= 0, has only root(s) if b2 − 4 a c ≥ 0, and if this condition is satisfied

then the root(s) are

x =
−b ±

√
b2 − 4 a c

2a
.

(c) The function f(x) = sin(x) has the roots

. . . ,−3π,−2π,−π, 0, π, 2π, 3π, . . . .

In shorter notation, the roots are x = k π, with k ∈ Z.

(d) The natural exponential function exp(x) = ex has no roots because we have

exp(x) = ex > 0 for all x ∈ R.

(e) The natural logarithm ln(x) has only one root at x = 1, since ln(1) = 0 and

since ln(x) < 0 for x ∈ (0, 1) and ln(x) > 0 for x > 1. 2

Remark 4.3 (roots of polynomials of degree n)

A polynomial p : R → R of degree n,

p(x) = a0 + a1 x + a2 x2 + . . . + an−1 xn−1 + an xn,

where an 6= 0, has at most n real roots.

4.2 Turning Points/Extrema: Local Maxima and

Minima

In this section we define local and global maxima and minima, the so-called

turning points or extrema of a function, and we will learn a criterion for finding

them with the help of the first and second derivative of the function.

Discussing local maxima and minima will involve some additional new terminology,

namely, stationary points of a function.

In this chapter we need also the following notation for sets:
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Notation 4.4 (intersection of two sets)

Let A and B be two sets. The set A ∩ B is called the intersection of A and B,

and it is defined to be the set of all elements that are in both sets A and B.

In formulas,

A ∩ B = {a ∈ A : a is also in B} = {b ∈ B : b is also in A} ,

and we see that A ∩ B = B ∩ A.

Now we define the terms local minimum and local maximum of a function.

Definition 4.5 (local maximum and minimum)

Let A, B ⊂ R, and let f : A → B be a function.

(i) We say that f has a local maximum at a point x0 ∈ A if

f(x) ≤ f(x0) for all x ∈ (x0 − ε, x0 + ε) ∩ A, (4.1)

with some suitable ε > 0.

(ii) We say that f has a local minimum at a point x0 ∈ A if

f(x) ≥ f(x0) for all x ∈ (x0 − ε, x0 + ε) ∩ A, (4.2)

with some suitable ε > 0.

(iii) We say that f has a turning point or extremum at x0 ∈ A, if f has at

x0 either a local maximum or a local minimum.

In words, if a function f : A → B has a local maximum at a point x = x0, then

there exists a neighborhood of x0 such that f(x0) is the largest value among all f(x)

for x in this neighborhood, that is, f(x) ≤ f(x0) for all x from the neighborhood.

Definition 4.6 (global maximum and minimum)

Let A, B ⊂ R, and let f : A → B be a function.

(i) We say that f has a global maximum at a point x0 ∈ A if

f(x) ≤ f(x0) for all x ∈ A. (4.3)

(ii) We say that f has a global minimum at a point x0 ∈ A if

f(x) ≥ f(x0) for all x ∈ A. (4.4)
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Figure 4.1: On the left an example of a function with a global maximum and a local

maximum. On the right the behavior of f close to a (global/local) maximum.

A global maximum is also a local maximum, but the reverse is not true.

Likewise, a global minimum is also a local minimum.

Definitions 4.5 and 4.6 are illustrated in Figure 4.1 for the case of the local and

global maximum.

Example 4.7 (local and global minimum)

The function f : R → R, f(x) = x2, has a global (and local) minimum at x = 0,

because

f(0) = 0 ≤ x2 = f(x) for all x ∈ R.

We observe that here

f(0) = 0 < x2 = f(x) for all x ∈ R with x 6= 0,

that is, x = 0 is the only point at which the minimal value f(0) = 0 is attained. 2

Example 4.8 (local and global maximum)

The function sin : R → [−1, 1] has a global and a local maximum all points

x =
π

2
+2π k =

(4k + 1)π

2
, k ∈ Z, that is, x ∈

{
. . . ,− 7π

2
,− 3π

2
,
π

2
,
5π

2
,
9π

2
, . . .

}
,

and the value of sin(x) at all these points is 1. For the maximum at x = π/2, we

have

sin(x) < sin(π/2) for all x ∈ [0, π] with x 6= π/2,

that is, in the interval [0, π], the point x = π/2 is the only point at which we have

sin(x) = 1. 2
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We saw the following property in the last examples: In a suitable neighborhood

of a point x0 at which f has a maximum (minimum), this point is the only point in

that neighborhood at which the value of the maximum (minimum) is attained.

This property is not always true but will hold in almost all examples that we

discuss. An example where this property does not hold are constant functions.

Example 4.9 (degenerate case: all points are maxima and minima)

Consider the constant function f : R → R, f(x) = c, with some constant c ∈ R.

Then for every (fixed) x0 ∈ R,

f(x0) = c ≤ c = f(x) for all x ∈ R and f(x0) = c ≥ c = f(x) for all x ∈ R.

Thus we see that x0 is both a local and global minimum and a local and global

maximum. Since x0 ∈ R was arbitrary, all points x ∈ R are both a local and global

maximum and a local and global minimum of the constant function f(x) = c. This

is obviously a ‘degenerate’ case! 2

With the terminology below we obtain an easy way of determining with the help of

the first and second derivative at which points a function has a local maximum or

a local minimum.

Definition 4.10 (stationary points)

Consider a smooth enough function f : A → B. If for some x0 ∈ A we have

f ′(x0) = 0, then x0 is called a stationary point of f .

The next lemma provides the useful information that a turning point/extremum is

also a stationary point. Thus we need only investigate for each stationary point

whether the function f attains at this point a local maximum or minimum.

Lemma 4.11 (turning point/extremum ⇒ stationary point)

A turning point/extremum of a function f is also a stationary point of f .

Remark 4.12 (how to determine candidates for local maxima/minima)

From the last lemma we see that it is enough to check for all stationary

points whether they are turning points/extrema. A point which is not a

stationary point cannot be a turning point/extremum.

The statement of Lemma 4.11 is intuitively clear, because the sign of the deriva-

tive f ′(x) determines whether the function is monotonically increasing or
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decreasing. For example, if we have a local maximum at x = x0 then we have the

following on a suitable interval (x0 − ε, x0 + ε): On the left of x0, the function f is

monotonically increasing, that is, f ′(x) ≥ 0 for x0 − ε < x < x0. On the right of x0

the function f is monotonically decreasing, that is, f ′(x) ≤ 0 for x0 < x < x0 + ε.

Thus we can conclude that f ′(x0) = 0. This is illustrated in Figure 4.1.

We go now a step further in this analysis, and we will assume that we have no

‘degenerate case’, that is, we assume the following: If f has a local maximum

(minimum) at x0, then for some suitable ε > 0,

f(x) < f(x0)
(

f(x) > f(x0), respectively
)

for all x ∈ (x0−ε, x0+ε) with x 6= x0.

We have seen that the derivative f ′ changes its sign at a local maximum or local

minimum. Assume that f has a local maximum at x = x0. Then f ′ changes at

x = x0 from being positive to being negative. If f ′ changes from being positive

to being negative, then f ′′ must be strictly monotonically decreasing in a

neighborhood of x0 and therefore f ′′(x0) < 0. If f has a local minimum at x0,

then f ′ changes at x = x0 from being negative to being positive. If f ′ changes from

being negative to being positive, then f ′′ is strictly monotonically increasing

in a neighborhood of x0, and therefore f ′′(x0) > 0.

These observations motivate to the following theorem.

Theorem 4.13 (2nd derivative test for turning points/extrema)

Let A, B ⊂ R, let f : R → R be a sufficiently smooth function, and let x0 ∈ A be

a stationary point of f , that is, f ′(x0) = 0. Then the following holds:

(i) If f ′′(x0) < 0, then the function f has a local maximum at x = x0.

(ii) If f ′′(x0) > 0, then the function f has a local minimum at x = x0.

(iii) If f ′′(x0) = 0, then we cannot conclude anything: f could have a local

maximum, or a local minimum, or neither at x = x0.

We observe that the third statement (iii) is not so satisfactory since we gain no

information. Later-on in Section 4.5, we will discuss how to proceed in case (iii).

Now we will discuss some examples.

Example 4.14 (stationary points and turning points of f(x) = x2)

The function f : R → R, defined by f(x) = x2, has the derivative f ′(x) = 2 x.

Stetting the f ′(x) = 0 yields

f ′(x) = 2 x = 0 ⇒ x = 0.
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We compute the second derivative f ′′(x) = 2 and evaluate at the stationary point

x = 0. We find f ′′(0) = 2 > 0. Thus the function f(x) = x2 has at x = 0

a local minimum. The coordinates of the global minimum are (0, 0), and since

f(x) = x2 ≥ 0 = f(0), we see that the local minimum is also as global minimum. 2

8

4

6

2

0

x

2-2-3 -1 0 31

Figure 4.2: Graph of f(x) = x2. The function has a global minimum at x = 0.

Example 4.15 (turning points/extrema of the sine function)

Find the turning points/extrema, that is, the local minima and maxima, of the sine

function.

Solution: We have f ′(x) =
(
sin(x)

)′
= cos(x), and the stationary points are those

for which f ′(x) = cos(x) = 0. Thus the stationary points of sin(x) are

x =
(2k + 1)π

2
, k ∈ Z, that is, x ∈

{
. . . ,− 5π

2
,− 3π

2
,− π

2
,
π

2
,
3π

2
,
5π

2
, . . .

}
.

The second derivative of f is given by f ′′(x) =
(
cos(x)

)′
= − sin(x), and we find

that

f ′′
(

(2k + 1)π

2

)
= − sin

(
(2k + 1)π

2

)
=

{ −1 if k is even,

1 if k is odd.

Since we can describe even k by k = 2ℓ and odd k by k = 2ℓ + 1, ℓ ∈ Z, we have

f ′′
(

(4ℓ + 1)π

2

)
= −1, f ′′

(
(4ℓ + 3)π

2

)
= 1, ℓ ∈ Z.
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Therefore we have local maxima at all points

x =
(4ℓ + 1)π

2
, ℓ ∈ Z, that is, x ∈

{
. . . ,− 7π

2
,− 3π

2
,
π

2
,
5π

2
, . . .

}
,

and the value of sin(x) at these points is 1. We have local minima at all points

x =
(4ℓ + 3)π

2
, ℓ ∈ Z, that is, x ∈

{
. . . ,− 5π

2
,− π

2
,
3π

2
,
7π

2
, . . .

}
,

and the value of sin(x) are these points is −1. 2
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Figure 4.3: The graph of sin(x) on the left and the graph of cosh(x) on the right.

Example 4.16 (turning points/extrema of cosh(x))

Find the turning points/extrema of f : R → R, f(x) = cosh(x).

Solution: We compute the stationary points, that is, the points at which we have

f ′(x) =
(
cosh(x)

)′
= 0. We find

f ′(x) =
d

dx
cosh(x) = sinh(x) =

ex − e−x

2
= 0 ⇒ x = 0,

and x = 0 is the only stationary point. We differentiate again and get

f ′′(x) =
d2

dx2
cosh(x) =

d

dx
sinh(x) = cosh(x) =

ex + e−x

2

Evaluating at the stationary point x = 0 yields

f ′′(0) = cosh(0) =
e0 + e−0

2
=

2

2
= 1 > 0.

Thus, from Theorem 4.13, we know that f(x) = cosh(x) has a local minimum at

x = 0, and the coordinates of the local minimum are
(
0, cosh(0)

)
= (0, 1). 2
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4.3 Curvature: Convex Upward and Convex Down-

ward

For plotting a function it is helpful to know ‘which way the graph curves’. We will

first explain and define what this means geometrically. Then we will give a formal

definition of curvature with the help of the second derivative.

Definition 4.17 (geometric definition of convex upward/downward I)

Let f : A → B be a smooth enough function, and I be a subinterval of A.

(i) The function f is convex upward on I if at every point x0 ∈ I the tangent

of f at x = x0 lies below the graph of f . If, in addition, close to (x0, f(x0))

this tangent touches the graph only at (x0, f(x0)), then f is strictly convex

upward on I.

(ii) The function f is convex downward on I if at every point x0 ∈ I the

tangent of f at x = x0 lies above the graph of f . If, in addition, close

to (x0, f(x0)) this tangent touches the graph only at (x0, f(x0)), then f is

strictly convex downward on I.

Definition 4.17 is illustrated in Figure 4.4 below. It is important to remember that

the condition on the tangent needs to be fulfilled for all points x0 in the given

interval I.

0

0

y

x x

f(x)

f(x  )

f(x)

�
�
�
�

�
�
�
�

0

0

y

xx

f(x  )
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Figure 4.4: Illustration of the geometric definition of (strictly) convex upward and

(strictly) convex downward from Definition 4.17.

Considering the function in the left picture of Figure 4.4, we see that if f is strictly
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convex upward, then the derivative f ′(x) increases as x increases. Thus we expect

that f ′′(x) > 0. Likewise, in the right picture, the derivative f ′(x) decreases as x

increases, and thus we expect that f ′′(x) < 0. This is indeed the case and will give

us an easy criterion for checking whether a function is (strictly) convex upward or

(strictly) convex downward (see Definition 4.20 below).

Example 4.18 (strictly convex upward/downward function)

The function f : R → R, f(x) = x2, is strictly convex upward on R, and the function

g : R → R, g(x) = −x2, is a strictly convex downward on R. This can be directly

seen from the geometric definition with the tangent given above. 2
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Figure 4.5: The function f(x) = x2 (on the left) is strictly convex upward on R,

and the function g(x) = −x2 (on the right) is strictly convex downward on R.

Definition 4.19 (geometric definition of convex upward/downward II)

Let f : A → B be a smooth enough function, and I be a subinterval of A.

(i) The function f is convex upward on I, if for every two points x1 and x2

in I the straight line that connects (x1, f(x1)) and (x2, f(x2)) lies above the

graph of f . If, in addition, this straight line only touches the graph of f at

(x1, f(x1)) and (x2, f(x2)), then f is strictly convex upward on I.

(ii) The function f is convex downward on I, if for every two points x1 and

x2 in I the straight line that connects (x1, f(x1)) and (x2, f(x2)) lies below

the graph of f . If, in addition, this straight line only touches the graph of f

at (x1, f(x1)) and (x2, f(x2)), then f is strictly convex downward on I.
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Definition 4.19 is illustrated in Figure 4.6 below. It is important to note that the

straight line that connects (x1, f(x1)) with (x2, f(x2)) needs to lie above the graph

(and below the graph, respectively) for all points x1 and x2 in I.
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Figure 4.6: Illustration of the geometric definition of (strictly) convex upward and

(strictly) convex downward from Definition 4.19.

Now we give a very useful formal characterization of (strictly) convex up-

ward and (strictly) convex downward with the help of the second derivative.

Definition 4.20 ((strictly) convex upward/downward)

Let A, B ⊂ R, and let [a, b] ⊂ A be a closed subinterval of A. Consider a smooth

enough function f : A → B. Then the following holds true:

(i) The function f is strictly convex upward on [a, b] if

f ′′(x) > 0 for all x ∈ (a, b).

(ii) The function f is convex upward on [a, b] if

f ′′(x) ≥ 0 for all x ∈ (a, b).

(iii) The function f is strictly convex downward on [a, b] if

f ′′(x) < 0 for all x ∈ (a, b).

(iv) The function f is convex downward on [a, b] if

f ′′(x) ≤ 0 for all x ∈ (a, b).
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With this lemma we can now easily investigate where a function is (strictly) convex

upward or (strictly) convex downward. We demonstrate this for the functions f(x) =

x2 and g(x) = −x2 from Example 4.18.

Example 4.21 (Example 4.18 continued)

Consider the functions f : R → R, f(x) = x2, and g : R → R, g(x) = −x2, from

Example 4.18. Verify with the help of Lemma 4.20 that f is strictly convex upward

on R, and that g is strictly convex downward on R.

Solution: We compute the second derivative of each function, and we find

f ′(x) = 2 x, f ′′(x) = 2, and g′(x) = −2 x, g′′(x) = −2.

Since f ′′(x) = 2 > 0 for all x ∈ R, the function f(x) = x2 is strictly convex upward

on R. Since g′′(x) = −2 < 0 for all x ∈ R, the function g(x) = −x2 is strictly convex

downward on R. 2

Now we consider constant functions and affine linear functions. Since they are

straight lines (and not curved) we expect, from Definition 4.19, that they are both

convex upward and convex downward on R. (Note that the straight line connecting

two points (x1, f(x1)) and (x2, f(x2)) on the graph of a constant or affine linear

function lies on the graph itself.)

Example 4.22 (constant functions and affine linear functions)

Show with the help of Lemma 4.20 that f : R → R, defined f(x) = mx + c, with

constants m ∈ R and c ∈ R, is both convex upward and convex downward on R.

Solution: We calculate the second derivative and find f ′(x) = m and f ′′(x) = 0.

Thus

f ′′(x) = 0 ≥ 0 and f ′′(x) = 0 ≤ 0 for all x ∈ R.

Thus, from Lemma 4.20, the function f(x) = mx + c is both convex upward on R

and convex downward on R. 2

Finally we will discuss three functions each of which is on some intervals strictly

convex upward and on some intervals strictly convex downward.

Example 4.23 (curvature of the polynomial f(x) = x3)

Investigate the curvature of the polynomial f : R → R, defined by f(x) = x3.

Solution: We compute the second derivative and find

f ′(x) = 3 x2 and f ′′(x) = 6 x.
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Thus we have

f ′′(x) = 6 x < 0 for all x < 0, and f ′′(x) = 6 x > 0 for all x > 0.

Thus we see that f(x) = x3 is strictly convex downward on (−∞, 0], and that

f(x) = x3 is strictly convex upward on [0,∞). We have plotted f(x) = x3 in the

left picture of Figure 4.7. 2

Example 4.24 (curvature of sinh(x))

Determine the curvature of f : R → R, f(x) = sinh(x).

Solution: We compute the second derivative of sinh(x).

f ′(x) =
d

dx
sinh(x) = cosh(x), f ′′(x) =

d2

dx2
sinh(x) =

d

dx
cosh(x) = sinh(x).

Since

f ′′(x) = sinh(x) =
ex − e−x

2
< 0 for x < 0,

f ′′(x) = sinh(x) =
ex − e−x

2
> 0 for x > 0,

we see that f(x) = sinh(x) is strictly convex downward on (−∞, 0] and strictly

convex upward on [0,∞). We have plotted f(x) = sinh(x) in the middle picture in

Figure 4.7. 2
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Figure 4.7: The graph of the function f(x) = x3 on the left, the graph of the function

f(x) = sinh(x) in the middle, and the graph of the function f(x) = sin(x) on the

right.

Example 4.25 (curvature of sin(x))

Investigate the curvature of the sine function sin : R → R.
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Solution: We want to use Lemma 4.20. Thus we calculate the second derivative of

sin(x).
d

dx
sin(x) = cos(x),

d2

dx2
sin(x) =

d

dx
cos(x) = − sin(x).

From the geometric definition of the sine function we see that − sin(x) < 0 for

x ∈ (0, π) and that − sin(x) > 0 for x ∈ (−π, 0). Because of the periodicity of

the sine function with period 2 π, we may add integer multiples of 2π, and thus we

obtain

d2

dx2
sin(x) = − sin(x)

{
< 0 if x ∈

(
2k π, (2k + 1)π

)
, k ∈ Z,

> 0 if x ∈
(
(2k − 1)π, 2k π

)
, k ∈ Z.

Thus we see that the function sin(x) is strictly convex upward on all closed intervals[
(2k − 1)π, 2k π

]
, k ∈ Z, and that sin(x) is strictly convex downward on all closed

intervals
[
2k π, (2k + 1)π

]
, k ∈ Z. The sine function is plotted in the right picture

in Figure 4.7. 2

The discussed examples were elementary in the sense that the curvature could be

guessed from our knowledge of the graph of the function. This is intentional, since

the knowledge of the graph helps with the understanding of the concept of curvature.

In some examples that we get at the end of this chapter and in some problems on

Exercise Sheet 4, you will not know the graph of the function beforehand and thus

it will not be possible to determine the curvature without doing some calculations.

4.4 Changes of Curvature: Points of Inflection

We have already seen in the previous section that, if we want to analyze and plot a

function, it is important to know about the curvature of f . Especially it is useful

to know at which points (if any) f changes its curvature, that is, changes from

being strictly convex upward to being strictly convex downward, or vice versa. In

the previous section we have seen that the curvature can be characterized with the

second derivative as follows:

A function f is strictly convex upward on [a, b] if f ′′(x) > 0 for all x ∈ (a, b),

and f is strictly convex downward on [a, b] if f ′′(x) < 0 for all x ∈ (a, b).

Thus a change of curvature is characterized by the fact that the second

derivative changes its sign. In particular, the second derivative will be zero

at the point where the change of curvature occurs.
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After these observations, the next definition is quite natural.

Definition 4.26 (point of inflection)

Let A, B ⊂ R, and let f : A → B be a sufficiently smooth function. A point

x0 ∈ A where the second derivative f ′′ changes its sign is called a point

of inflection of f . That is, if x0 is a point of inflection of f , then we have

with some suitable ε > 0

f ′′(x) < 0 for all x ∈ (x0 − ε, x0) and f ′′(x0) = 0

and f ′′(x) > 0 for all x ∈ (x0, x0 + ε), (4.5)

or

f ′′(x) > 0 for all x ∈ (x0 − ε, x0) and f ′′(x0) = 0

and f ′′(x) < 0 for all x ∈ (x0, x0 + ε). (4.6)

Remark 4.27 (behavior of the graph at a point of inflection)

From Definition 4.20, we see that (4.5) means that at x0 the graph of f changes

from being strictly convex downward (for x < x0) to being strictly convex

upward (for x > x0). Likewise (4.6) means that at x0 the graph of f changes

from being strictly convex upward (for x < x0) to being strictly con-

vex downward (for x > x0). This means that at x0 the curvature of the graph

changes.

The definition of a point of inflection immediately implies a way of finding the points

of inflection of a function.

Remark 4.28 (how to find the points of inflection)

Compute f ′′ and find its roots, that is, the values of x for which f ′′(x) = 0. If

for a root x0 of f ′′ the sign of f ′′(x) changes at x = x0 from being negative

to being positive or vise versa, then the point x0 is a point of inflection. Note

that there are functions with points x0 such that f ′′(x0) = 0, but x0 is not a

point of inflection. So if f ′′(x0) = 0, its is important to check whether f ′′

changes its sign at x = x0 or not!

Example 4.29 (analysis and sketch of f(x) = x3)

Analyze the behavior of the function f : R → R, defined by f(x) = x3, and sketch

the function.
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Solution: To be able to sketch the function f(x) = x3, we determine its minima

and maxima, points of inflection, and its behavior as x → ±∞. We start with the

behavior of f(x) as x → ∞,

lim
x→∞

f(x) = lim
x→∞

x3 = ∞, lim
x→−∞

f(x) = lim
x→−∞

x3 = −∞.

Furthermore, f(x) = x3 < 0 for x < 0 and f(x) = x3 > 0 for x > 0. Now we find

the stationary points: if f ′(x) = 3 x2 = 0, then x = 0. We compute the second

derivative f ′′(x) = 6 x. Since f ′′(0) = 0, from Theorem 4.13, the point x = 0 could

be a local maximum or a local minimum or neither. The point x = 0 could also be

a point of inflection, and to test this we investigate whether f ′′ changes its sign at

x = 0. Since

f ′′(x) = 6 x < 0 for all x < 0 and f ′′(x) = 6 x > 0 for all x > 0,

we see that f ′′ changes its sign at x = 0. Thus x = 0 is a point of inflection, and

f(x) = x3 is strictly convex downward on (−∞, 0] and strictly convex upward on

[0,∞). With this information and the values of f(x) at some suitable points, we

can sketch f(x) = x3 and the graph is shown in Figure 4.8. 2
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Figure 4.8: Graph of f(x) = x3. The function has a point of inflection at x = 0.

Example 4.30 (analysis and sketch of polynomial of degree 3)

Analyze and sketch the function f : R → R, given by

f(x) = x3 − 4 x = x (x2 − 4) = x(x − 2)(x + 2).
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Solution: From the last representation of f we see that its roots are at x = 0,

x = −2 and x = 2. For very large |x| the function f(x) = x3 − 4 x behaves like x3

because

f(x) = x3 − 4 x = x3

(
1 − 4

x2

)
≈ x3, due to lim

|x|→∞

4

x2
= 0.

In particular, f(x) ≈ x3 for large |x| implies that

lim
x→∞

f(x) = lim
x→∞

(
x3 − 4 x

)
= lim

x→∞
x3 = ∞,

and

lim
x→−∞

f(x) = lim
x→−∞

(
x3 − 4 x

)
= lim

x→−∞
x3 = −∞.

From f ′(x) = 3 x2 − 4, we find that the stationary points satisfy

f ′(x) = 3 x2 − 4 = 0 ⇒ 3 x2 = 4 ⇒ x2 =
4

3
,

and thus the stationary points are

x =

√
4

3
=

2√
3

and x = −
√

4

3
= − 2√

3
.

The second derivative of f(x) = x3 − 4 x is given by

f ′′(x) =
(
3 x2 − 4

)′
= 6 x,

and we have

f ′′
(

2√
3

)
= 6

2√
3

= 4
√

3 > 0, f ′′
(
− 2√

3

)
= −6

2√
3

= −4
√

3 < 0.

Thus the function f(x) = x3 − 4 x has a local minimum at x = 2/
√

3 and it has a

local maximum at x = −2/
√

3. From

f(2/
√

3) =

(
2√
3

)3

− 4

(
2√
3

)
=

8

3
√

3
− 8√

3
=

8 − 24

3
√

3
= − 16

3
√

3
,

f(−2/
√

3) =

(
− 2√

3

)3

− 4

(
− 2√

3

)
= − 8

3
√

3
+

8√
3

=
−8 + 24

3
√

3
=

16

3
√

3
,

we see that coordinates of the local maximum are
(
− 2/

√
3, 16/(3

√
3)
)

and the

coordinates of the local minimum are
(
2/
√

3,−16/(3
√

3)
)
.

To find the points of infection (if any) we set the second derivative zero.

f ′′(x) = 6 x = 0 ⇒ x = 0,
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and since f ′′(x) = 6 x < 0 for all x < 0 and f ′′(x) = 6 x > 0 for all x > 0, we see

that the point x = 0 is a point of inflection. The function f(x) = x3 − 4 x is strictly

convex downward on (−∞, 0] and strictly convex upward on [0,∞).

With this information and some suitable additional points (x, f(x)), we can now

sketch f(x) = x3 − 4 x. The plot is in Figure 4.9. 2
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Figure 4.9: The graph of f(x) = x3 − 4 x. The function f has a point of inflection

at (0, 0) and a local maximum at (−2/
√

3, 16/(3
√

3)) ≈ (−1.2, 3.1) and a local

minimum at (2/
√

3,−16/(3
√

3)) ≈ (1.2,−3.1)

Example 4.31 (points of inflection of the sine function)

Find the points of inflection of the sine function.

Solution: We compute the second derivative of sin(x), and obtain

d

dx
sin(x) = cos(x),

d2

dx2
sin(x) =

d

dx
cos(x) = − sin(x),

and we see that the second derivative has the same zeros as the sine function itself.

The roots of the second derivative of sin(x) are at

x = k π, where k ∈ Z, that is, x ∈ {. . . ,−3π,−2π,−π, 0, π, 2π, 3π, . . .} .
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From Example 4.25, we know that

d2

dx2
sin(x) = − sin(x)

{
< 0 if x ∈

(
2k π, (2k + 1)π

)
, k ∈ Z,

> 0 if x ∈
(
(2k − 1)π, 2k π

)
, k ∈ Z,

and we see that the sine function changes sign at every point x = k π. Thus all the

points k π, k ∈ Z, are points of inflection. 2

4.5 Turning Points/Extrema Revisited

With what we have learned so far, we do not know how to interpret the situation

that f ′(x0) = 0, f ′′(x0) = 0, and f ′′ does not change sign at x = x0. We know only

that the point x0 is not a point of inflection. We will first discuss a simple example

where such a situation occurs.

Example 4.32 (maxima and minima of f(x) = x4 and g(x) = −x4)

Consider the functions f : R → R, defined by f(x) = x4, and g : R → R, defined by

g(x) = −x4. Since x4 = (x2)2 > 0 for all x 6= 0, we see that

f(0) = 0 < x4 = f(x) for all x ∈ R \ {0},
g(0) = 0 > −x4 = g(x) for all x ∈ R \ {0}.

Thus the function f(x) = x4 has at x = 0 a global minimum, and the function

g(x) = −x4 has at x = 0 a global maximum.

However, we cannot determine this with the help of Theorem 4.13. Indeed, we have

f ′(x) = 4 x3 = 0 ⇒ x = 0 and g′(x) = −4 x3 = 0 ⇒ x = 0,

and in both cases the only stationary point is x = 0. The second derivatives are

given by

f ′′(x) = 12 x2 and g′′(x) = −12 x2,

and we have that f ′′(0) = 0 and g′′(0) = 0. Theorem 4.13 only tells us that f could

have a local maximum or a local minimum or neither at x = 0. We also see that

x = 0 is not a point of inflection of either of the two functions because the second

derivatives do not change sign at x = 0.

How do we now determine that f(x) = x4 has a local (and global) minimum at

x = 0, and that g(x) = −x4 has a local (and global) maximum at x = 0?
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We continue to differentiate and find

f (3)(x) = 24 x and g(3)(x) = −24 x,

and

f (4)(x) = 24 and g(4)(x) = −24.

We see that the third derivatives are again zero at x = 0, that is, f (3)(0) = 0 and

g(3)(0) = 0. However, the forth derivatives are different from zero, and we have

f (4)(0) = 24 > 0 and g(4)(0) = −24 < 0.

Based on this we would formulate the tentative rule that if at a stationary point

x0 of f , we have that f ′′(x0) = 0 and f (3)(x0) = 0, but f (4)(x0) 6= 0, then x0 is a

turning point/extremum. If f (4)(x0) > 0, then f assumes at x0 a local minimum;

and if f (4)(x0) < 0, then f assumes at x0 a local maximum. 2
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Figure 4.10: The graph of f(x) = x4 on the left and the graph of g(x) = −x4 on

the right.

The tentative rule formulated in the previous example is indeed true and holds in

an even more general form that covers all cases which we could not handle so far.
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Theorem 4.33 (even order derivative test for extrema)

Let A, B ⊂ R, and let f : A → B be a smooth enough function. If x0 ∈ A is a

stationary point of f (that is, f ′(x0) = 0) and if

f ′′(x0) = f (3)(x0) = . . . = f (n−1)(x0) = 0 and f (n)(x0) 6= 0,

with an even integer n ≥ 2, then f has a local maximum at x0 if

f (n)(x0) < 0,

and f has a local minimum at x0 if

f (n)(x0) > 0.

We observe that Theorem 4.33 includes Theorem 4.13 as the special case n = 2.

Note that it is essential that n is an even integer! For odd n the statement is

not true!

We will apply Theorem 4.33 in the next example.

Example 4.34 (polynomial of degree 5)

Analyze and sketch the graph of the polynomial f : R → R defined by

f(x) = x (x − 1)4.

Solution: We see that the polynomial has the roots x = 0 and x = 1, that is, it

intersects the x-axis at these points. We compute the first derivative of f with the

product rule

f ′(x) = (x − 1)4 + x 4 (x − 1)3 = (x − 1)3(x − 1 + 4 x) = (x − 1)3 (5 x − 1),

and we see that the stationary points are x = 1/5 and x = 1. We compute the

second derivative

f ′′(x) =
[
(x − 1)3 (5 x − 1)

]′
= 3 (x − 1)2(5 x − 1) + (x − 1)3 5

= (x − 1)2 (15 x − 3 + 5 x − 5) = (x − 1)2 (20 x − 8) = 4 (x − 1)2 (5 x − 2).

We find that

f ′′(1/5) = 4

(
1

5
− 1

)2(
5 × 1

5
− 2

)
= 4

(
− 4

5

)2

(−1) = 4 × 16

25
(−1) = − 64

25
< 0,
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and thus the polynomial has a local maximum at x = 1/5. The coordinates of

this local maximum are (1/5, 44/55) ≈ (0.2, 0.08). At x = 1, we find on the other

hand f ′′(1) = 0. The point x = 1 is not a point of inflection because f ′′(x) ≥ 0

on (0.4,∞). (Indeed (x − 1)2 ≥ 0 for all x ∈ R and 5 x − 2 ≥ 0 is equivalent to

x ≥ 2/5 = 0.4.) Thus we suspect that the point x = 1 may also be a maximum or

minimum and we keep on differentiating.

f (3)(x) =
[
4 (x − 1)2 (5 x − 2)

]′
= 8 (x − 1) (5 x − 2) + 4 (x − 1)2 5

= 4 (x − 1) (10 x − 4 + 5 x − 5) = 12 (x − 1) (5 x − 3),

and we see that still f (3)(1) = 0. We differentiate again and find that

f (4)(x) =
[
12 (x − 1) (5 x − 3)

]′
= 12 (5 x − 3) + 12 (x − 1) 5

= 12 (5 x − 3 + 5 x − 5) = 12 (10 x − 8) = 24 (5 x − 4).

Now we have

f (4)(1) = 24 (5 − 4) = 24 > 0,

and we know from Theorem 4.33 that the polynomial f attains a local minimum at

x = 1. The coordinates of this minimum are (1, 0).

We note that we could also have deduced the local minimum at x = 1 from the fact

that

f ′(x) = (x − 1)3 (5 x − 1) < 0 for all x ∈ (1/5, 1)

f ′(x) = (x − 1)3 (5 x − 1) > 0 for all x > 1.

Finally we discuss whether the function has any points of inflection. The equation

f ′′(x) = 0 yields

f ′′(x) = 4 (x − 1)2 (5 x − 2) = 0 ⇒ x = 1 or x =
2

5
= 0.4.

Since f has a local minimum at x = 1, the point x = 1 is not a point of inflection.

At the point x = 2/5 however, we have a point of inflection because f ′′(x) changes

its sign. Indeed, (x − 1)2 > 0 for x 6= 1, but (5 x − 2) changes its sign at x = 2/5.

Since 5 x−2 < 0 for x < 2/5 and 5 x−2 > 0 for x > 2/5, we see that at x = 2/5 the

function f(x) changes from being strictly convex downward to being strictly convex

upward. The coordinates of the point of inflection are (2/5, (2×34)/55) ≈ (0.4, 0.05).

With these preparations, we can easily sketch the graph of f(x) = x (x − 1)4 which

is shown in Figure 4.11 below.
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Figure 4.11: Graph of f(x) = x (x − 1)4. The function f has a local maximum

at (1/5, 44/55) ≈ (0.2, 0.08), a local minimum at (1, 0), and a point of inflection at(
2/5, (2 × 34)/55

)
≈ (0.4, 0.05).

4.6 Analyzing and Sketching Functions

In this section we will discuss some more examples of analyzing and sketching func-

tions. While discussing these examples, we will make use of the new knowledge

gained in this chapter as well as of the old knowledge about sketching and analyzing

functions from Chapters 1, 2, and 3.

At the end of this section we will discuss damped oscillations as an application.

Damped oscillations describe, for example, the motion of a pendulum or the motion

of a weight attached to an elastic spring.

Before we discuss some more examples, we summarize what we have learned that

can help in analyzing and sketching functions.
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Summary 4.35 (how to analyze and sketch a function)

Let A, B ⊂ R, and let f : A → B be a smooth enough function. For analyzing

f and sketching its graph, the following may be useful:

• Check whether the function is even or odd.

• Compute the roots of f , that is, the points x at which f(x) = 0.

• Determine for which x the function f has positive values and for which

x the function f has negative values.

• Determine where the function f is (strictly) monotonically increasing

and where it is (strictly) monotonically decreasing.

• If the numbers in A get arbitrary large, then determine the limit

limx→∞ f(x), and if the numbers in A get arbitrarily small then determine

the limit limx→−∞ f(x). If the function is undefined at a single point x0,

then determine the limits limx<x0, x→x0 f(x) and limx>x0, x→x0 f(x), as ap-

propriate. We would also like to know which ‘pattern’ the growth of

f(x) follows (that is, how fast f grows) as x → ±∞ or x → x0. Find the

asymptotes of f if it has any.

• Find the stationary points of f , that is, compute f ′ and determine the

points x at which f ′(x) = 0.

• For each stationary point check whether f has at this point a local maxi-

mum or a local minimum or neither by using Theorems 4.13 and 4.33.

• Determine the curvature of f , that is, where f is (strictly) convex

upward and where f is (strictly) convex downward, and determine

the points of inflection, that is, the points x0 at which f ′′(x0) = 0 and

at which f ′′ changes its sign.

Note that for plotting or even analyzing a function it is mostly not nec-

essary to investigate all items listed above in Summary 4.35! Often it is

sufficient for the task at hand to consider only a suitable selection of the items listed

above.

Example 4.36 Let a > 0 be fixed. Analyze the function f : R → R, defined by

f(x) =
√

x2 + a2 =
(
x2 + a2

)1/2
,

and sketch its graph.

Solution: The function is even because

f(−x) =
√

(−x)2 + a2 =
√

x2 + a2 = f(x) for all x ∈ R,
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and therefore we know that its graph is mirror symmetric with respect to the y-axis.

Since

x2 + a2 ≥ a2 > 0 ⇒ f(x) =
√

x2 + a2 ≥ a > 0,

we see that the function has only positive values, and thus it has no roots. We

note that its lowest value and global minimum is attained at x = 0 and the value is

f(0) =
√

a2 = a. Thus the global (and local) minimum has the coordinates (0, a).

When |x| is large, we have

f(x) =
√

x2 + a2 ≈
√

x2 =
√

|x|2 = |x|

Thus y(x) = x and g(x) = −x are asymptotes of f . We have

lim
x→∞

f(x) = lim
x→∞

|x| = ∞ and lim
x→−∞

f(x) = lim
x→−∞

|x| = ∞.

Differentiating with the chain rule gives that

f ′(x) =
1

2

(
x2 + a2

)−1/2
2 x =

x√
x2 + a2

.

Thus the only stationary point is at x = 0, where f assumes its global minimum.

That f has a global minimum at x = 0 can also be seen from f ′(x) < 0 for all x < 0

and f ′(x) > 0 for all x > 0. We observe that for |x| large, we have that

f ′(x) =
x√

x2 + a2
≈ x

|x| =

{
1 if x > 0 is very large,

−1 if x < 0 is very small.

We have previously derived that f(x) ≈ |x| for large |x|, and we see this reflected

in the fact that f ′(x) ≈ 1 for very large x > 0 and that f ′(x) ≈ −1 for very small

x < 0.

We compute the second derivative with the chain rule and the quotient rule

f ′′(x) =
(x2 + a2)1/2 − x (1/2) (x2 + a2)−1/2 2 x

(x2 + a2)
=

(x2 + a2) − x2

(x2 + a2)3/2
=

a2

(x2 + a2)3/2
.

Since f ′′(x) > 0 for all x ∈ R, f has no point of inflection. We see that f ′′(0) =

a2/a3 = 1/a > 0, which gives another proof that f(x) attains at the stationary point

x = 0 a local minimum. With the information gained so far we can easily sketch

f(x) =
√

x2 + a2, and the plot of the graph is shown in Figure 4.12 below. 2
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Figure 4.12: Graph of f(x) =
√

x2 + a2 and its asymptotes y(x) = x and g(x) = −x.

Example 4.37 Analyze and plot the function f : R \ {1} → R, defined by

f(x) =
x2

x − 1
, x 6= 1.

Solution: We have that f(0) = 0, and that f(x) > 0 when x > 1, and f(x) < 0

when x < 1. As x approaches the point x0 = 1, we have

lim
x>1, x→1

f(x) = ∞ and lim
x<1, x→1

f(x) = −∞.

Thus the vertical line through (1, 0) is an asymptote of f(x) = x2/(x − 1). When

|x| is large, we find

f(x) =
x2

x − 1
=

(x2 − 1) + 1

x − 1
=

(x − 1)(x + 1) + 1

x − 1
= x + 1 +

1

x − 1
.

Let y(x) = x + 1. Since

lim
x→±∞

[
f(x) − y(x)

]
= lim

x→±∞

[
x + 1 +

1

x − 1
−
(
x + 1

)]
= lim

x→±∞

1

x − 1
= 0,

we see that the straight line y(x) = x + 1 is an asymptote of f(x) = x2/(x− 1) (see

Definition 1.11 for the definition of an asymptote). This implies

lim
x→∞

f(x) = lim
x→∞

(x + 1) = ∞ and lim
x→−∞

f(x) = lim
x→−∞

(x + 1) = −∞.
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Differentiating using the quotient rule gives that

f ′(x) =
2 x (x − 1) − 1 x2

(x − 1)2
=

2 x2 − 2 x − x2

(x − 1)2
=

x2 − 2 x

(x − 1)2
=

x (x − 2)

(x − 1)2
.

Thus the derivative f ′(x) is zero at x = 0 and at x = 2.

From the information obtained so far, we can already conclude that the function

has a local maximum at x = 0 and a local minimum at x = 2. Indeed, since

lim
x>1, x→1

f(x) = ∞ and lim
x→∞

f(x) = ∞

and since f has finite values on (1,∞), the function f must have at least one local

minimum on (1,∞). Every local minimum is a stationary point, and we have only

found the stationary point x = 2 in (1,∞). Thus this stationary point x = 2 is the

point where f has the local minimum. Likewise we know, from

lim
x<1, x→1

f(x) = −∞ and lim
x→−∞

f(x) = −∞

and from the fact that the function f has only finite values on (−∞, 1), that the

function f has at least one local maximum on (−∞, 1). Since a point at which f

has a local maximum is a stationary point and since f has only the stationary point

x = 0 in (−∞, 1), we know that f assumes a local maximum at the point x = 0.

We also know that there are no more turning points/extrema other than x = 0 and

x = 2, because these are the only stationary points.

If you find these considerations too complicated, you can alternatively use the second

derivative, once the stationary points x = 0 and x = 2 have been found. Before we

compute the second derivative, we rewrite f ′ as

f ′(x) =
x2 − 2 x

(x − 1)2
=

(x2 − 2 x + 1) − 1

(x − 1)2
=

(x − 1)2 − 1

(x − 1)2
= 1 − (x − 1)−2.

Now we can compute the second derivative easily

f ′′(x) =
(
1 − (x − 1)−2

)′
= (−1)(−2)(x − 1)−3 = 2 (x − 1)−3. (4.7)

We find that f ′′(0) = 2 (−1)3 = −2 < 0, and thus f has a local maximum at x = 0.

We find that f ′′(2) = 2 (1)3 = 2 > 0, and thus f has a local minimum at x = 2.

Since f ′′(x) 6= 0 for all x ∈ R \ {1}, the function f has no points of inflection.

The local maximum has the coordinates (0, 0) and the local minimum has the co-

ordinates (2, 4), and we can plot f .
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From (4.7) we see that f ′′(x) < 0 for x < 1 and that f ′′(x) > 0 for x > 1. Thus

f(x) = x2/(x − 1) is strictly convex downward on (−∞, 1) and strictly convex

upward on (1,∞).

With all this information we can easily sketch f(x) = x2/(x − 1) and the plot of f

is shown in Figure 4.13. 2

y

8

4

x

0
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40-4
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8
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Figure 4.13: Graph of f(x) = x2/(x− 1) in the left picture. In the right picture the

asymptotes of f , which are y(x) = x + 1 and the vertical line through (1, 0), have

been included in the plot. The function f has a local maximum at (0, 0) and a local

minimum at (2, 4).

Example 4.38 (analyze and sketch f(x) = x e−x2
)

Analyze and sketch the function

f : R → R, f(x) = x exp(−x2) = x e−x2

.

Solution: Since e−x2
> 0 for all x ∈ R, we find that f(x) = x e−x2

< 0 for all x < 0,

f(0) = 0, and f(x) = x e−x2
> 0 for all x > 0.

We have

lim
x→∞

x e−x2

= 0 and lim
x→−∞

x e−x2

= 0, (4.8)

which can be shown with de l’Hospital’s rule which you may know form school. In

our situation we need the following version of de l’Hospital’s rule: If limx→±∞ f(x) = ∞
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Figure 4.14: Graph of f(x) = x e−x2
.

(or limx→±∞ f(x) = −∞) and limx→±∞ g(x) = ∞, then

lim
x→±∞

f(x)

g(x)
= lim

x→±∞

f ′(x)

g′(x)
.

Application in our case yields

lim
x→±∞

x e−x2

= lim
x→±∞

x

ex2 = lim
x→±∞

1

2 x ex2 = 0,

as claimed. From (4.8), we also see that y(x) = 0 is an asymptote of f(x) = x e−x2
.

Next we determine the extrema/turning points and the points of inflection. We

calculate f ′ with the product rule and the chain rule, and get

f ′(x) =
d

dx

[
x e−x2]

= e−x2

+ x e−x2

(−2 x) = (1 − 2 x2) e−x2

= −2

(
x2 − 1

2

)
e−x2

= −2

(
x − 1√

2

)(
x +

1√
2

)
e−x2

.

Thus f ′(x) = 0 is satisfied for x = −1/
√

2 and x = 1/
√

2. Inspection of f ′(x)

shows that f ′(x) < 0 for all x < −1/
√

2, that f ′(x) > 0 for all x ∈ (−1/
√

2, 1/
√

2),

and that f ′(x) < 0 for all x > 1/
√

2. Thus we may conclude that f(x) = x e−x2

has a local minimum at x = −1/
√

2 and a local maximum at x = 1/
√

2. The
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coordinates of the local minimum are (−1/
√

2,−e−1/2/
√

2) ≈ (−0.71,−0.43), and

the coordinates of the local minimum are (1/
√

2, e−1/2/
√

2) ≈ (0.71, 0.43).

We calculate the second derivative of f and find

f ′′(x) =
d

dx

[
(1 − 2 x2) e−x2

]
= −4 x e−x2

+ (1 − 2 x2) e−x2

(−2 x)

=
[
− 4 x − 2 x + 4 x3

]
e−x2

=
[
4 x3 − 6 x

]
e−x2

= 4 x

[
x2 − 3

2

]
e−x2

= 4 x

(
x −

√
3

2

)(
x +

√
3

2

)
e−x2

. (4.9)

By evaluating the second derivative at the stationary points x = −1/
√

2 and

x = 1/
√

2 we could also have determined that they are extrema (instead of in-

specting the sign of the first derivative). We do this now:

f ′′(−1/
√

2) = −4
1√
2

(
− 1√

2
−
√

3

2

)(
− 1√

2
+

√
3

2

)
e−1/2

= − 4√
2

(−1 −
√

3)√
2

(−1 +
√

3)√
2

e−1/2

= −
√

2
(
(−1)2 − (

√
3)2
)
e−1/2 = 2

√
2 e−1/2 > 0,

and we see that f has a local minimum at x = −1/
√

2.

f ′′(1/
√

2) = 4
1√
2

(
1√
2
−
√

3

2

)(
1√
2

+

√
3

2

)
e−1/2

=
4√
2

(1 −
√

3)√
2

(1 +
√

3)√
2

e−1/2

=
√

2
(
12 − (

√
3)2
)
e−1/2 = −2

√
2 e−1/2 < 0,

and we see that f has a local maximum at x = 1/
√

2.

Now we discuss the curvature of f(x) = x e−x2
and the points of inflection. From

(4.9), we see that f ′′(x) < 0 for all x < −
√

3/2, and f ′′(x) > 0 for all x ∈
(−
√

3/2, 0), and f ′′(x) < 0 for all x ∈ (0,
√

3/2), and f ′′(x) > 0 for all x >
√

3/2.

Thus

• f is strictly convex downward on (−∞,−
√

3/2],

• f is strictly convex upward on [−
√

3/2, 0],

• f is strictly convex downward on [0,
√

3/2], and
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• f is strictly convex upward on [
√

3/2,∞).

In particular, the roots of the second derivative, x = 0, x = −
√

3/2 and x =
√

3/2,

are points of inflection of f , because f ′′ changes its sign at these points.

With this information we can easily sketch the function f(x) = x e−x2
, and the plot

is shown in Figure 4.14. 2

Finally we close the chapter with the example of damped oscillation.
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Figure 4.15: Graph of the damped oscillation x(t) = 2 e−t/3 cos(2t).

Application 4.39 (damped oscillation)

A simple harmonic motion occurs when the force acting on the object is

directly proportional to the displacement x from a fixed point and is

always directed towards this point. The displacement x of such a simple har-

monic motion is of the form

x(t) = a sin(ω t),

where a is the amplitude, that is, the greatest displacement from equilibrium posi-

tion, and the variable t is the time. The constant ω is given by

ω = 2π f, where f is the frequency of oscillation,

that is, the number of cycles per second. Examples of a simple harmonic

motion are the motion of a pendulum or the motion of a mass attached to an elastic

spring, if we neglect all external influences such as friction. The simple harmonic
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motion could also describe an electromagnetic wave. Since a pendulum on the earth

is subjected to viscosity (friction) of the air, the amplitude of the pendulum becomes

progressively smaller. We describe this by saying that the motion of the pendulum

is damped. Such a damped oscillation can be of the form

x(t) = a e−b t cos(ω t), (4.10)

where the factor e−b t with b > 0 controls the dampening effect. We have plotted

(4.10) with a = 2, b = 1/3, and ω = 2 in Figure 4.15 below.



Chapter 5

Basic Integration

Integration is the reverse operation to differentiation. In this chapter we

will introduce integration and discuss all standard techniques of integration. In

Chapter 6, we will use integration to tackle various applications, such as, determining

the volume and centre of mass of a body of revolution, as well as calculating moments

of inertia and average values of functions.

In Section 5.1, we define the integral geometrically as the area under the graph,

and then we derive a formal definition of the area under graph with the help of the

lower sum, upper sum, and the trapezium sum. In Section 5.2, we introduce

primitives (or antiderivatives) and indefinite integrals (which provide a means

of getting a primitive). We discuss the fundamental theorem of calculus which

links integration with differentiation and which is the ‘backbone of calculus’. In

Section 5.3, we get a list of primitives/antiderivatives (or indefinite integrals)

of a set of standard functions. This list of primitives/antiderivatives follows directly

from our knowledge of derivatives with the help of the fundamental theorem of cal-

culus. In Section 5.4, we learn elementary properties of the integral, namely the

linear properties and the domain splitting property. In Sections 5.5 and 5.6,

we learn the two most important techniques of integration: integration by sub-

stitution and integration by parts, respectively. In Section 5.7, we discuss some

examples where a combination of integration by substitution and integration by

parts is needed to solve the integral, and we also discuss a physical application

of integration in gravitation.

103
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5.1 Geometric Definition and Interpretation of the

Integral

The integral
∫ b

a
f(x) dx of a function f over an interval [a, b] is geometrically defined

as follows:

Definition 5.1 (geometric definition of the integral)

Let A, B ⊂ R. The integral of a function f : A → B over the interval

[a, b] ⊂ A, denoted by ∫ b

a

f(x) dx,

is the area under the graph from x = a to x = b, as indicated in Figure 5.1.

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

x

y

a b

������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
����������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������

a b

x

y

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

���
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
����������������

��������
��������
��������

y

x

a

bc

Figure 5.1: The definition of
∫ b

a
f(x) dx as the area under the graph.

The area under the graph can be positive, if the graph of f for x ∈ [a, b] lies above

the x-axis, that is, if f(x) ≥ 0 for all x ∈ [a, b] as in the left picture in Figure 5.1.

The area under the graph can be negative, if the the graph of f for x ∈ [a, b] lies

below the x-axis, that is, if f(x) ≤ 0 for all x ∈ [a, b] as in the middle picture in

Figure 5.1. In the right picture in Figure 5.1, the graph of f for x ∈ [a, b] lies partly

above and partly below the x-axis. In this case for x ∈ [a, c] the graph lies below the

x-axis and the area under the graph for x ∈ [a, c] is negative. And for x ∈ [c, b] the

graph lies above the x-axis and the area under the graph for x ∈ [c, b] is positive.

In the right picture of Figure 5.1, the area under the graph for x ∈ [a, b] is the sum

of the negative area under the graph for x ∈ [a, c] and the positive area under

the graph for x ∈ [c, b].

For the most simple example of the integral of a constant function over an interval

[a, b], it is relatively clear how to measure the area under the graph.
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Example 5.2 (integral of a constant function)

For the constant function f : R → R, f(x) = c, with some constant c ∈ R the

integral ∫ b

a

f(x) dx =

∫ b

a

c dx

can be easily calculated: Due to the fact that graph of the constant function f(x) = c

is just a straight line parallel to the x-axis and through (0, c), the area under the

graph from x = a to x = b is just the rectangle with the corners (see Figure 5.2)

(a, 0), (b, 0), (b, c), (a, c).

The area of the rectangle is

length of bottom side × height = (b − a) c.

Thus
∫ b

a

f(x) dx =

∫ b

a

c dx = (b−a) c. 2

c

a b

area = (b−a)c

x

y

Figure 5.2: Area under the graph of the constant function f(x) = c from x = a to

x = b.

Now we want to generalize this idea to the case of arbitrary continuous functions,

where we initially not expect to get the area under the graph exactly, but to get an

approximation of the exact value.
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How would one elementary approximate the area under the graph?

Since we can easily compute the area of rectangles, an natural idea is to fill the

area under the graph with a suitable collection of rectangles and then take

the sum of the areas of the rectangles as an approximation of the area of

under the graph. How this is done and what a suitable collection of rectangles is

will be explained in the rest of this section.

For simplicity we will now assume that the function f : A → B which we want to

integrate is continuous.

We want to approximate the integral

∫ b

a

f(x) dx,

of a continuous function f : A → B over the interval [a, b] ⊂ A, that is, we want to

approximate the area under the graph from x = a to x = b. As a starting

point, we split the interval [a, b] into n subintervals of equal length (see

Figure 5.3).

a b
Figure 5.3: Division of the interval [a, b] into n = 4 subintervals of equal length.

Since the length of the interval [a, b] is b−a, each of the subintervals of equal length

has then length (b − a)/n. The n subintervals are the given by

[
a, a +

b − a

n

]
,

[
a +

b − a

n
, a + 2

b − a

n

]
,

[
a + 2

b − a

n
, a + 3

b − a

n

]
,

. . . ,

[
a + (n − 2)

b − a

n
, a + (n − 1)

b − a

n

]
,

[
a + (n − 1)

b − a

n
, b

]
,

or in shorter notation
[
a + (k − 1)

b − a

n
, a + k

b − a

n

]
, for k = 1, 2, 3, . . . , n − 1, n.

For simplicity, we will use the abbreviated notation

xk = a + k
b − a

n
, k = 0, 1, 2, 3, . . . , n − 1, n,
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for the endpoints of the subintervals. The n subintervals are in this new notation

[x0, x1], [x1, x2], [x2, x3], . . . , [xn−2, xn−1], [xn−1, xn].

Now we take over each subinterval the rectangle whose height is either the mini-

mal value of the function or the maximal value of the function assumed over this

subinterval, respectively, as indicated in Figure 5.4. The sum of the area of all

these rectangles in the left and right picture in Figure 5.4, respectively, gives an

approximation of the area under the graph.
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Figure 5.4: The lower sum of f over the interval [a, b] with respect to a division of

[a, b] into n = 4 subintervals of equal length is the sum of the areas of the rectangles

(see left picture). The upper sum of f over the interval [a, b] with respect to a

division of [a, b] into n = 4 subintervals of equal length is the sum of the areas of

the rectangles (see right picture).

The formal definition below uses the notation of the maximum and minimum of

a continuous function on a closed interval [c, d], defined by

max
x∈[c,d]

f(x) = max {f(x) : x ∈ [c, d]} = largest value of f(x) for x ∈ [c, d],

and

min
x∈[c,d]

f(x) = min {f(x) : x ∈ [c, d]} = smallest value of f(x) for x ∈ [c, d],
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respectively.

Definition 5.3 (lower sum and upper sum)

Let A, B ⊂ R, and let f : A → B be a continuous function. Let [a, b] ⊂ A, and

let

xk = a + k
b − a

n
, k = 0, 1, 2, 3, . . . , n − 1, n,

be the endpoints of the intervals of the subdivision of [a, b] into n subintervals of

equal length. The lower sum Ln(f, [a, b]) of f with respect to the subdivision of

[a, b] into n subintervals of equal length is defined by

Ln(f, [a, b]) =
b − a

n

n∑

k=1

min
x∈[xk−1,xk]

f(x)

=
b − a

n

(
min

x∈[x0,x1]
f(x)

)
+

b − a

n

(
min

x∈[x1,x2]
f(x)

)
+ . . . +

b − a

n

(
min

x∈[xn−1,xn]
f(x)

)
.

The upper sum Un(f, [a, b]) of f with respect to the subdivision of [a, b] into n

subintervals of equal length is defined by

Un(f, [a, b]) =
b − a

n

n∑

k=1

max
x∈[xk−1,xk]

f(x)

=
b − a

n

(
max

x∈[x0,x1]
f(x)

)
+

b − a

n

(
max

x∈[x1,x2]
f(x)

)
+ . . . +

b − a

n

(
max

x∈[xn−1,xn]
f(x)

)
.

We note here that if the function f is not continuous then the minimum needs to be

replaced by the so-called infimum and the maximum needs to be replaced by the

so-called supremum. The infimum and supremum are essentially generalizations

of the notion of a minimum and a maximum. However, we will not discuss them

here.

From Figure 5.4, it is immediately clear that the lower sum Ln(f, [a, b]) and the upper

sum Un(f, [a, b]) are an approximation of the integral
∫ b

a
f(x) dx. It is intuitively

clear that this approximation gets better if the subintervals get smaller,

that is, if n gets larger.

From Figure 5.4, it is also immediately clear the sum of the areas of the rectangle in

the left picture is less then the area under the graph and that the sum of the areas

of the rectangles in the right picture is more than the area under the graph. This

implies that the lower sum is less than the area under the graph and that the upper

sum is more than the area under the graph.
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Lemma 5.4 (lower bound and upper bound for the intergral)

Let A, B ⊂ R, and let [a, b] ⊂ A be a closed interval. Let f : A → B be a

continuous function. Then for all n ∈ N,

Ln(f, [a, b]) ≤
∫ b

a

f(x) dx ≤ Un(f, [a, b]).

To get a better approximation than either the lower sum Ln(f, [a, b]) or the upper

sum Un(f, [a, b]), we can take their mean value, which means that the minimum

and the maximum of the function values on each subinterval, respectively, is replaced

by the mean value of these two. Thus

1

2

[
Ln(f, [a, b]) + Un(f, [a, b])

]
(5.1)

=
1

2

[
b − a

n

n∑

k=1

min
x∈[xk−1,xk]

f(x) +
b − a

n

n∑

k=1

max
x∈[xk−1,xk]

f(x)

]

=
b − a

n

n∑

k=1

1

2

[
min

x∈[xk−1,xk]
f(x) + max

x∈[xk−1,xk]
f(x)

]
. (5.2)
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Figure 5.5: One trapezium from the trapezium sum.
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One individual term in the sum in (5.2) is given by

b − a

n

1

2

[
min

x∈[xk−1,xk]
f(x) + max

x∈[xk−1,xk]
f(x)

]
,

and is the area of the trapezium with the corners (see Figure 5.5)

(xk−1, 0), (xk, 0),

(
xk−1, min

x∈[xk−1,xk]
f(x)

)
,

(
xk, max

x∈[xk−1,xk]
f(x)

)
.

Thus the sum (5.2) is called the trapezium sum.

Definition 5.5 (trapezium sum)

Let A, B ⊂ R, and let [a, b] ⊂ A. Let f : A → B be a continuous function. The

mean value of the lower sum Ln(f, [a, b]) and the upper sum Un(f, [a, b])

is called the trapezium sum and is denoted by

Tn(f, [a, b]) =
b − a

n

n∑

k=1

1

2

[
min

x∈[xk−1,xk]
f(x) + max

x∈[xk−1,xk]
f(x)

]
, (5.3)

where as before

xk = a + k
b − a

n
, k = 0, 1, 2, 3, . . . , n − 1, n.

The trapezium sum is an approximation of the area under the graph of f

from x = a to x = b, and thus it is an approximation of the integral
∫ b

a

f(x) dx.

If we increase n then the subintervals of [a, b] become smaller and smaller, and the

trapezium rule Tn(f, [a, b]) becomes a better and better approximation of the area

under the graph, that is, of the integral
∫ b

a
f(x) dx. Thus we get the integral as the

limit of the sequence {Tn(f, [a, b])} for n → ∞.

Definition 5.6 (formal definition of the integral)

Let A, B ⊂ R, and let [a, b] ⊂ A. Let f : A → B be a continuous function. The

integral of f over the interval [a, b] is defined as the limit

∫ b

a

f(x) dx = lim
n→∞

Tn(f, [a, b]). (5.4)

On the left-hand side of (5.4), we call f(x) the integrand and ‘a’ the lower

bound and ‘b’ the upper bound of the integral.
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Of course working out integrals with Definition 5.6 is rather laborious, and in the

following sections we will learn the integrals of some standard functions and rules

to compute integrals of composite functions of such standard functions.

We observe that the trapezium rule Tn(f, [a, b]) can be easily programmed on a

computer and gives for large n a fairly good basic approximation of the integral.

We will discuss two examples, where we use Definition 5.6 to compute the integral.

Example 5.7 (integral of a constant function)

Find the integral of the constant function f : R → R, f(x) = c, where c ∈ R is a

constant, over the interval [0, 1].

Solution: The n subintervals of [0, 1] of equal length have now length (1−0)/n = 1/n

and are given by
[
0,

1

n

]
,

[
1

n
,
2

n

]
, . . . ,

[
(n − 2)

n
,
(n − 1)

n

]
,

[
n − 1

n
, 1

]
,

or equivalently
[
k − 1

n
,
k

n

]
, for k = 1, 2, 3, . . . , n − 1, n.

Since f is constant, we have

min
x∈[k−1

n
, k
n ]

f(x) = c and max
x∈[k−1

n
, k
n ]

f(x) = c for k = 1, 2, 3, . . . , n − 1, n.

Thus we have that

1

2

[
min

x∈[k−1
n

, k
n ]

f(x) + max
x∈[k−1

n
, k
n ]

f(x)

]
=

1

2
[c + c] = c for k = 1, 2, 3, . . . , n − 1, n,

and the trapezium sum is given by

Tn(f, [0, 1]) =
1

n

n∑

k=1

1

2

[
min

x∈[k−1
n

, k
n ]

f(x) + max
x∈[k−1

n
, k
n ]

f(x)

]
=

1

n

n∑

k=1

c =
1

n
n c = c.

This implies that the integral is given by

∫ 1

0

f(x) dx =

∫ 1

0

c dx = lim
n→∞

Tn(f, [0, 1]) = lim
n→∞

c = c.

Of course, this is what we expected since the area under graph is the rectangle with

corners (0, 0), (1, 0), (1, c), and (0, c), which has the area (1 − 0) × c = c. 2
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Example 5.8 (integral of an affine linear function)

Find the integral of the affine linear function f : R → R, f(x) = x, over the interval

[0, 1].

Solution: The n subintervals of [0, 1] of equal length have now length (1−0)/n = 1/n

and are given by
[
0,

1

n

]
,

[
1

n
,
2

n

]
, . . . ,

[
(n − 2)

n
,
(n − 1)

n

]
,

[
n − 1

n
, 1

]
,

or equivalently
[
k − 1

n
,
k

n

]
, for k = 1, 2, 3, . . . , n − 1, n.

Since f(x) = x is strictly monotonically increasing on R (that is, f(x1) < f(x2) if

x1 < x2) we have for any interval [c, d], that

min
x∈[c,d]

f(x) = min
x∈[c,d]

x = c and max
x∈[c,d]

f(x) = max
x∈[c,d]

x = d,

and thus for all k = 1, 2, 3, . . . , n − 1, n

min
x∈[k−1

n
, k
n ]

f(x) = min
x∈[k−1

n
, k
n ]

x =
k − 1

n
and max

x∈[ k−1
n

, k
n ]

f(x) = max
x∈[k−1

n
, k
n ]

x =
k

n
.

Thus we have that for all k = 1, 2, 3, . . . , n − 1, n,

1

2

[
min

x∈[k−1
n

, k
n ]

f(x) + max
x∈[k−1

n
, k
n ]

f(x)

]
=

1

2

[
k − 1

n
+

k

n

]
=

2k − 1

2n
.

Thus the trapezium sum is given by

Tn(f, [0, 1]) =
1

n

n∑

k=1

1

2

[
min

x∈[k−1
n

, k
n ]

f(x) + max
x∈[k−1

n
, k
n ]

f(x)

]

=
1

n

n∑

k=1

2k − 1

2n
=

1

2 n2

n∑

k=1

(
2k − 1

)
=

1

2 n2

(
2

n∑

k=1

k −
n∑

k=1

1

)
.

Since
n∑

k=1

k =
n(n + 1)

2
,

we find that

Tn(f, [0, 1]) =
1

2 n2

(
2

n∑

k=1

k −
n∑

k=1

1

)
=

1

2 n2

[
n(n + 1) − n

]
=

1

2 n2
n2 =

1

2
.
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Thus the integral is given by

∫ 1

0

f(x) dx =

∫ 1

0

x dx = lim
n→∞

Tn(f, [0, 1]) = lim
n→∞

1

2
=

1

2
.

Of course, this is what we expected since the area under graph is the area of the

triangle with corners (0, 0), (1, 0), and (1, 1), and this area is (1 × 1)/2 = 1/2. 2

5.2 Primitives, the Fundamental Theorem of Cal-

culus, and Indefinite Integrals

In this section we will establish a connection between integration and differ-

entiation. We will see that taking a so-called indefinite integral and differentiating

are ‘reverse operations’ to each other.

Definition 5.9 (primitive/antiderivative)

Let A, B ⊂ R, and let f : A → B be a continuous function. A continuous function

F : A → B with

dF (x)

dx
= F ′(x) = f(x) for all x ∈ A

is called a primitive of f or antiderivative of f .

We consider some examples.

Example 5.10 (primitives/antiderivatives of functions)

(a) The function f : R → R, defined by f(x) = 2 x, has the primitive/antiderivative

F (x) = x2. Indeed,

F ′(x) = (x2)′ = 2 x = f(x) for all x ∈ R.

We note that, since the derivative of a constant function is zero, the function

F̃ (x) = x2 + 3 is also a primitive/antiderivative for f(x) = x2.

(b) A primitive/antiderivative of the function f : (0,∞) → R, f(x) = 1/x, is given

by the function F : (0,∞) → R, F (x) = ln(x). Indeed,

F ′(x) =
(
ln(x)

)′
=

1

x
= f(x) for all x ∈ (0,∞).
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Since for any constant function g(x) = c we have g′(x) = 0, the function

F̃ : (0,∞) → R, F̃ (x) = ln(x) + c, where c ∈ R is an arbitrary constant, is

also a primitive/antiderivative of f(x) = 1/x. 2

Lemma 5.11 (primitives of the same function differ by a constant)

Let A, B ⊂ R. Let f : A → B be a continuous function, and let F : A → B be a

primitive/antiderivative of f . Then, for every constant c ∈ R, the function

F̃ : A → B, F̃ (x) = F (x) + c, (5.5)

is also a primitive/antiderivative of f . The difference of any two primi-

tives/antiderivatives of f is a constant function.

Proof: Differentiating (5.5) yields

F̃ ′(x) =
(
F (x) + c

)′
= F ′(x) + 0 = F ′(x) = f(x),

and thus F̃ is indeed a primitive/antiderivative of f .

It remains to show that the difference of any two primitives/antiderivatives of f is

a constant function. Let F and F̃ be two primitives/antiderivative of f . Then

F ′(x) = f(x) and F̃ ′(x) = f(x)

imply, by subtracting the second equation from the first, that

(
F (x) − F̃ (x)

)′
= F ′(x) − F̃ ′(x) = f(x) − f(x) = 0.

Since the only functions whose derivatives are zero are constant functions we can

conclude that there exists some constant c ∈ R such that

F (x) − F̃ (x) = c for all x ∈ A.

Thus we see that any two primitives/antiderivative of f differ only by a constant

function, as claimed. 2

We observe that Lemma 5.11 implies that given one primitive/antiderivative

of f , we can obtain any other primitive of f by adding a suitable constant.

We can obtain some elementary rules for primitives/antiderivatives of functions from

the properties of the derivative.
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Lemma 5.12 (elementary properties of the primitive/antiderivative)

Let A, B ⊂ R, and let α ∈ R. Let f : A → B and g : A → B be continuous

functions and let F : A → B and G : A → B be primitives/antiderivatives of f

and g, respectively. Then the function F (x) + G(x) is a primitive of f(x) + g(x),

and the function α F (x) is a primitive of α f(x).

Proof: From the properties of the derivative

(
F (x)+G(x)

)′
= F ′(x)+G′(x) = f(x)+g(x) and

(
α F (x)

)′
= α F ′(x) = α f(x),

which implies that F + G is a primitive/antiderivative of f + g and α F is a primi-

tive/antiderivative of α f . 2

We note that (in the notation of Lemma 5.12) the combination of both properties

yields

(
α F (x) + β G(x)

)′
= α F ′(x) + β G′(x) = α f(x) + β g(x),

that is, α F + β G is a primitive/antiderivative of α f + β g. We could also have the

sum of more than two functions.

We apply this new knowledge to find some primitives/antiderivatives.

Example 5.13 (primitives of sums and multiples of functions)

Determine a primitive/antiderivative of the function f : R → R, defined by

f(x) = 2 ex + 5 cos(x).

Solution: We know that (ex)′ = ex and
(
sin(x)

)′
= cos(x). Thus we have that a

primitive/antiderivative of f is given by

F : R → R, F (x) = 2 ex + 5 sin(x),

where we have used Lemma 5.12. 2

Example 5.14 (primitives of sums and multiples of functions)

Find a primitive/antiderivative of the function f : (−π/2, π/2) → R, defined by

f(x) =
7

(
cos(x)

)2 − cosh(x)

4
.



116 5. Basic Integration

Solution: We know that
(
tan(x)

)′
=
(
cos(x)

)−2
and

(
sinh(x)

)′
= cosh(x), and

thus a primitive/antiderivative of f is given by

F : (−π/2, π/2) → R, F (x) = 7 tan(x) − sinh(x)

4
,

where we have used Lemma 5.12. 2

Now we can formulate the fundamental theorem of calculus.

Theorem 5.15 (fundamental theorem of calculus)

Let A, B ⊂ R. Let f : A → B be a continuous function, and let F : A → B be a

primitive/antiderivative of f . Then for any interval [a, b] ⊂ A

∫ b

a

f(x) dx = F (b) − F (a). (5.6)

Often we find also the abbreviated notation F (x)|ba, defined by

F (x)|ba = F (b) − F (a),

instead of F (b) − F (a) on the right-hand side of (5.6).

The fundamental theorem of calculus is of paramount importance, be-

cause it links integration and differentiation!

We show in two examples how to make use of the fundamental theorem of calculus.

Example 5.16 (application of the fundamental theorem of calculus)

Evaluate the integral ∫ 2

1

1

x
dx.

Solution: Since
(
ln(x)

)′
= 1/x, the function F : (0,∞) → R, F (x) = ln(x), is a

primitive/antiderivative of f : (0,∞) → R, f(x) = 1/x. Thus from (5.6) in the

fundamental theorem of calculus
∫ 2

1

1

x
dx = ln(x)|21 = ln(2) − ln(1) = ln(2). 2

Example 5.17 (application of the fundamental theorem of calculus)

Evaluate the integral ∫ π

0

cos(x) dx.
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Solution: Since
(
sin(x)

)′
= cos(x), the function F : R → R, F (x) = sin(x), is

a primitive/antiderivative of f : R → R, f(x) = cos(x). Thus from (5.6) in the

fundamental theorem of calculus
∫ π

0

cos(x) dx = sin(x)|π0 = sin(π) − sin(0) = 0 − 0 = 0.

Should we be surprised that the integral is zero? The answer is no! In the graph the

same area lies for x ∈ [π/2, π] below the x-axis and above the graph of cos(x) that

lies for x ∈ [0, π/2] above the x-axis an below the graph of cos(x). Thus negative

and positive area cancel each other out, and the integral is zero. 2

We point out here that it does not matter which primitive/antiderivative F

of f is used on the right-hand side of (5.6). If we replace F in (5.6) by another

primitive/antiderivative F̃ of f , then we know by Lemma 5.11 that F̃ (x) = F (x)+c

with some constant c ∈ R. Thus, from (5.6),

∫ b

a

f(x) dx = F̃ (b) − F̃ (a) =
(
F (b) + c

)
−
(
F (b) − c

)
= F (b) − F (a).

Before we continue, we introduce the following convention of notation: for a

continuous function f : A → B and [a, b] ⊂ A, we define

∫ a

b

f(x) dx = −
∫ b

a

f(x) dx. (5.7)

If we replace in (5.6) the variable over which we integrate by t and subsequently

replace the upper bound b by x and the lower bound a by x0, then (5.6) reads

∫ x

x0

f(t) dt = F (x) − F (x0) ⇒ F (x0) +

∫ x

x0

f(t) dt = F (x),

and we see that the primitive/antiderivative F of f can be represented as

F (x) = F (x0) +

∫ x

x0

f(t) dt. (5.8)

Since adding of any constant to F yields another primitive/antiderivative of f we

may add −F (x0) to (5.8) and get the primitive/antiderivative

F0(x) =

∫ x

x0

f(t) dt
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of f . This leads to the definition of the so-called indefinite integral of a function

which gives us a primitive/antiderivative of f .

Definition 5.18 (indefinite integral)

Let f : (a, b) → R be a continuous function. For every fixed x0 ∈ (a, b), the

function F0 : (a, b) → R

F0(x) =

∫ x

x0

f(t) dt, (5.9)

is called an indefinite integral of f .

We note that in Definition 5.18 we need the notation (5.7), since we can have in

(5.9) that x0 > x.

Lemma 5.19 (indefinite integral defines primitive/antiderivative)

Let f : (a, b) → R be a continuous function. For every fixed x0 ∈ (a, b), the

indefinite integral F0 : (a, b) → R

F0(x) =

∫ x

x0

f(t) dt,

is a primitive/antiderivative of f .

Later-on when we will have learnt some techniques for computing integrals, we will

make use of Lemma 5.19 to compute primitives of composite functions.

We give an elementary example of the use of Lemma 5.19.

Example 5.20 (indefinite integral)

All primitives/antiderivatives of the function f : R → R, f(x) = 3 ex, are given by

F : R → R, F (x) =

∫ x

0

3 et dt + c,

where c ∈ R is an arbitrary constant. Since (3 et)′ = 3 et, we have from the (5.6)

that

F (x) =

∫ x

0

3 et dt = 3 et|x0 + c = 3 ex − 3 e0 + c = 3 ex + (c − 3) = 3 ex + c̃,

with an arbitrary constant c̃ = c − 3. Of course, the fact (3 et)′ = 3 et, tells us

already that 3 ex, and thus also 3 ex + c̃ is a primitive of f . 2
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5.3 Standard Integrals

In the last section we have seen that a primitive/antiderivative F : A → B of a

continuous function f : A → B allows us to evaluate an integral with the help of

the fundamental theorem of calculus (see Theorem 5.15), which says that, for

any [a, b] ⊂ A, we have
∫ b

a

f(x) dx = F (b) − F (a).

We have further learnt (see Lemma 5.19 above) that for any x0 ∈ A the indefinite

integral

F0(x) =

∫ x

x0

f(t) dt

defines a primitive/antiderivative of f , and thus, from Lemma 5.11, any primi-

tive/antiderivative of f is of the form

F (x) = F0(x) + c =

∫ x

x0

f(t) dt + c.

Thus the knowledge of the primitives/antiderivatives of standard functions allows

us to evaluate integrals. In Chapter 3, we have discussed derivatives and learned

some standard functions f and their derivatives f ′. The function f is a prim-

itive/antiderivative of its derivative f ′, and thus we can use Table 3.1 from

Chapter 3 to establish a table of functions and their primitives/antiderivatives (see

Table 5.1).

Note that you are expected to know the primitives/antiderivatives in Ta-

ble 5.1 from memory! They will not be provided in the final exam.

For example we know that (xp+1)′ = (p + 1)xp, and dividing by p + 1, we find that

(
xp+1

p + 1

)′
= xp ⇒ xp+1

p + 1
is a primitive/antiderivative for xp.

From (cos(x))′ = − sin(x) and thus (− cos(x))′ = sin(x), we see that − cos(x) is a

primitive/antiderivative of sin(x).
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Function f(x) Primitive/Antiderivative F (x)

0 c = constant

xn (with n 6= −1)
xn+1

n + 1
+ c

ex ex + c

1

x
ln(|x|) + c

sin(x) − cos(x) + c

cos(x) sin(x) + c

1
(
cos(x)

)2 =
(
sec(x)

)2
tan(x) + c

1
(
sin(x)

)2 =
(
cosec(x)

)2 − cot(x) + c

sinh(x) cosh(x) + c

cosh(x) sinh(x) + c

1
(
cosh(x)

)2 =
(
sech(x)

)2
tanh(x) + c

1
(
sinh(x)

)2 =
(
cosech(x)

)2 − coth(x) + c

Table 5.1: Important primitives/antiderivatives.

We give two examples in which we compute integrals with the help of Table 5.1 and

the fundamental theorem of calculus (see Theorem 5.15).

Example 5.21 (application of fundamental theorem of calculus)

Since
(
− cos(x)

)′
= sin(x), we have

∫ 2π

0

sin(x) dx = − cos(x)|2π
0 = − cos(2π) −

(
− cos(0)

)
= −1 − (−1) = 0,
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where we have used sin(0) = 1 and sin(2π) = 1. That the integral is zero is

not surprising, since the positive and negative area under the graph of sin(x) for

x ∈ [0, 2π] just cancel each other out. 2

Example 5.22 (application of fundamental theorem of calculus)

Since (x4/4)′ = x3, we have from the fundamental theorem of calculus (see Theo-

rem 5.15) that

∫ 4

1

x3 dx =
x4

4

∣∣∣∣
4

1

=
44

4
− 14

4
= 64− 1

4
=

255

4
. 2

5.4 Elementary Properties of the Integral

The most basic but nevertheless quite important properties of the integral are the

so-called linear properties.

Lemma 5.23 (linear properties of the integral)

Let A, B ⊂ R, and let [a, b] ⊂ A. Let f : A → B and g : A → B be continuous

functions, and let α ∈ R. Then

∫ b

a

(
f(x) + g(x)

)
dx =

∫ b

a

f(x) dx +

∫ b

a

g(x) dx. (5.10)

and ∫ b

a

α f(x) dx = α

∫ b

a

f(x) dx. (5.11)

Proof: This can be easily verified with the properties of the derivative and the

fundamental theorem of calculus (see Theorem 5.15) as follows. Let F be a primi-

tive/antiderivative of f and let G be a primitive/antiderivative of g. Then (F +G)′ =

F ′ + G′ = f + g and (α F )′ = α F ′ = α f from the properties of the derivative, and

thus F +G is a primitive/antiderivative of f +g and α F is a primitive/antiderivative

of α f . Now the left-hand side and the right-hand side of (5.10) can be evaluated

with the fundamental theorem of calculus (see Theorem 5.15).

∫ b

a

(
f(x)+g(x)

)
dx =

(
F (b)+G(b)

)
−
(
F (a)+G(a)

)
=
(
F (b)−F (a)

)
+
(
G(b)−G(a)

)
,

and ∫ b

a

f(x) dx +

∫ b

a

g(x) dx =
(
F (b) − F (a)

)
+
(
G(b) − G(a)

)
.
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We see that the left-hand side and the right-hand side of (5.10) do indeed coincide.

Likewise, we have for (5.11)
∫ b

a

α f(x) dx = α F (b) − α F (a) = α
(
F (b) − F (a)

)
= α

∫ b

a

f(x) dx,

and we see that (5.11) holds true. 2

We note that (5.10) and (5.11) are intuitively clear if we think of the geometric

interpretation of the integral
∫ b

a
f(x) dx as the area under the graph of f for x ∈ [a, b].

We discuss some examples.

Example 5.24 (linear properties of the integral)

Compute the integral ∫ e

1

(
3 x2 − 4 x +

3

x

)
dx.

Solution: We use the linear properties of the integral and obtain
∫ e

1

(
3 x2 − 4 x +

3

x

)
dx = 3

∫ e

1

x2 dx − 4

∫ e

1

x dx + 3

∫ e

1

1

x
dx.

Since (x3/3) = x2, (x2/2)′ = x and
(
ln(|x|)

)′
= 1/x, it follows from the fundamental

theorem of calculus (see Theorem 5.15) that

3

∫ e

1

x2 dx − 4

∫ e

1

x dx + 3

∫ e

1

1

x
dx = 3

x3

3

∣∣∣∣
e

1

− 4
x2

2

∣∣∣∣
e

1

+ 3 ln(|x|)|e1

=
(
x3 − 2 x2 + 3 ln(|x|)

)∣∣e
1

=
(
e3 − 2 e2 + 3 ln(e)

)
−
(
1 − 2 + 3 ln(1)

)

= e3 − 2 e2 + 3 + 1 = e3 − 2 e2 + 4,

where we have used that ln(1) = 0 and ln(e) = 1. Thus we find that
∫ e

1

(
3 x2 − 4 x +

3

x

)
dx = e3−2 e2+4. 2

We note here that we can alternatively use Lemma 5.12 to work out a primi-

tive/antiderivative of the integrand first and subsequently use the fundamental the-

orem of calculus (see Theorem 5.15). A primitive/antiderivative of the integrand

f(x) = 3 x2 − 4 x +3/x is given by F (x) = x3 − 2 x2 +3 ln(|x|), where we have used

Lemma 5.12 and the fact that (x3/3) = x2, (x2/2)′ = x and
(
ln(|x|)

)′
= 1/x. From

the fundamental theorem of calculus (see Theorem 5.15) we obtain now that
∫ e

1

(
3 x2 − 4 x +

3

x

)
dx =

[
x3 − 2 x2 + 3 ln(|x|)

]∣∣e
1
,

and simplifying of the right-hand side yields the same result that we obtained in the

previous example.
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Example 5.25 (linear properties of the integral)

For x > 0, evaluate the indefinite integral

∫ x

1

t2 − t

t2
dt.

Solution: In this case is it not directly possible to determine a primitive/antiderivative

of the integrand with the help of Table 5.1. Therefore we try to simplify the inte-

grand.
t2 − t

t2
=

t(t − 1)

t2
=

t − 1

t
= 1 − 1

t
,

and we know a primitive/antiderivative of each of the two individual terms. From

(t)′ = 1 and
(
ln(|t|)

)′
= 1/t we get

∫ x

1

t2 − t

t2
dt =

∫ x

1

(
1 − 1

t

)
dt =

∫ x

1

1 dt−
∫ x

1

1

t
dt = t|x1 − ln(|t|)|x1 = x−1− ln(x),

where we have used ln(1) = 0 in the last step. Since the indefinite integral defines

a primitive/antiderivative of the integrand, we know that a primitive/antiderivative

of f(x) = (x2 − x)/x2 is given by F (x) = x − 1 − ln(x), where x > 0. 2

Another very useful elementary property of the integral is the domain splitting

property.

Lemma 5.26 (domain splitting property)

Let f : [a, c] → R be a continuous function, and let a < b < c. Then

∫ c

a

f(x) dx =

∫ b

a

f(x) dx +

∫ c

b

f(x) dx. (5.12)

The domain splitting property (5.12) will be verified in one problem on Exercise

Sheet 5, and it follows relatively straight-forward from the geometric definition of

the integral as the area under the graph. We illustrate the use of the domain splitting

property with an example.

Example 5.27 (application of domain splitting property)

Compute the integral ∫ 1

−1

|x| dx

of the absolute value function f(x) = |x| over the interval [−1, 1].
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Solution: From the definition of the absolute value |x| (by |x| = −x for x < 0 and

|x| = x for x ≥ 0) and the domain splitting property (5.12), we have

∫ 1

−1

|x| dx =

∫ 0

−1

|x| dx +

∫ 1

0

|x| dx =

∫ 0

−1

(−x) dx +

∫ 1

0

x dx = −
∫ 0

−1

x dx +

∫ 1

0

x dx.

Since (x2/2)′ = x, we find

∫ 1

−1

|x| dx = −
∫ 0

−1

x dx +

∫ 1

0

x dx.

= − x2

2

∣∣∣∣
0

−1

+
x2

2

∣∣∣∣
1

0

= −
(

0 − (−1)2

2

)
+

(
12

2
− 0

)
=

1

2
+

1

2
= 1.

From sketching the graph of f(x) = |x|, we can see that 1 is indeed the correct area,

since the sum of the two triangles given by the area under the graph is just a square

with sides of length 1. 2

Remark 5.28 (integral is non-negative for non-negative function)

Another useful property of the integral is that f(x) ≥ 0 for all x ∈ [a, b] implies

∫ b

a

f(x) dx ≥ 0.

This is intuitively clear from the interpretation of the integral as the area under the

graph.

In the next two sections we will learn two important methods for evaluating integrals:

integration by substitution and integration by parts.

5.5 Integration by Substitution

Before we introduce integration by parts we start with two motivating examples.

Example 5.29 (primitive of 4 e4x)

To find a primitive of f : R → R, f(x) = 4 e4x, we observe that from the chain the

chain rule (e4x)′ = 4 e4x and thus the function

F : R → R, F (x) = e4x
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is a primitive/antiderivative of f(x) = 4 e4x. Thus the integral of f(x) = 4 e4x over

an interval [a, b] can be evaluated as follows

∫ b

a

4 e4x dx = e4x|ba = e4b − e4a, (5.13)

where we have used the fundamental theorem of calculus (see Theorem 5.15). 2

Example 5.30 (primitive of 2 x ex2
)

We want to compute the integral
∫ b

0

2 x ex2

dx.

We cannot determine a primitive/antiderivative directly from Table 5.1, but in-

spection of the the integrand with the chain rule in mind leads us to guess that

F (x) = ex2
is a primitive/antiderivative of f(x) = 2 x ex2

, which is indeed true:

from the chain rule

F ′(x) =
(
ex2)′

= ex2

2 x = 2 x ex2

= f(x).

Thus we obtain that ∫ b

0

2 x ex2

dx = ex2|b0 = eb2 − 1, (5.14)

where we have used the fundamental theorem of calculus (see Theorem 5.15). 2

For finding a primitive/antiderivative of the integrand in each of the integrals (5.13)

and (5.14), we have used the chain rule (see Lemma 3.23) for differentiating func-

tions of the form H : A → B, H(x) = (F ◦ g)(x) = F
(
g(x)

)
. The chain rule says

that the derivative of the composite function H is given by

H ′(x) =
[
F
(
g(x)

)]′
= F ′(g(x)

)
g′(x) = f

(
g(x)

)
g′(x) with f(y) = F ′(y).

(5.15)

In Example 5.30, we have in this notation F (y) = ey, g(x) = x2 and g′(x) = 2 x,

and F ′(y) = f(y) = ey. From (5.15), we can derive the following general formula by

integrating (5.15) over an interval [a, b] ⊂ A and using the fundamental theorem of

calculus (see Theorem 5.15).

F
(
g(x)

)∣∣b
a

=

∫ b

a

[
F
(
g(x)

)]′
dx =

∫ b

a

f
(
g(x)

)
g′(x) dx, (5.16)

and we can rewrite the left-hand side as

F
(
g(x)

)∣∣b
a

= F
(
g(b)

)
− F

(
g(a)

)
= F (y)

∣∣g(b)

g(a)
=

∫ g(b)

g(a)

f(y) dy. (5.17)
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In the last step we have used the fundamental theorem of calculus (see Theorem 5.15)

and the fact that F is a primitive/antiderivative of f . Combining (5.16) and (5.17),

yields ∫ g(b)

g(a)

f(y) dy =

∫ b

a

f
(
g(x)

)
g′(x) dx, (5.18)

which is the formula for integration by substitution.

Theorem 5.31 (integration by substitution)

Let f : B → C be a continuous function and let g : A → B be a sufficiently

smooth function. Then for any interval [a, b] ⊂ A,

∫ g(b)

g(a)

f(y) dy =

∫ b

a

f
(
g(x)

)
g′(x) dx. (5.19)

If F : B → C is a primitive of f , then the left-hand side can be expressed as

∫ g(b)

g(a)

f(y) dy = F (y)
∣∣g(b)

g(a)
= F

(
g(b)

)
− F

(
g(a)

)
.

In Theorem 5.31 above ‘sufficiently smooth’ means that g is continuous and that it

has a derivative g′ which is continuous.

How is integration by substitution performed in practice?

As we already saw in the examples discussed as motivation, we will very often start

with an integral that can be interpreted as the right-hand side of (5.19). If this is

the case, we set y = y(x) = g(x), but we also need to substitute g′(x) dx and the

boundaries of the integral. To do this we differentiate y = y(x) = g(x) with respect

to x, that is,
dy

dx
=

dg(x)

dx
= g′(x) ⇒ dy = g′(x) dx,

and observe that the new boundaries are y(a) = g(a) and y(b) = g(b). Thus
∫ b

a

f
(
g(x)︸︷︷︸
= y

)
g′(x) dx︸ ︷︷ ︸

= dy

=

∫ g(b)

g(a)

f(y) dy. (5.20)

If we know a primitive of f then we can now easily evaluate the integral on the

right-hand side of (5.20).

If we want to start with the left-hand side of (5.19), then the procedure is similar.

We have ∫ d

c

f(y) dy,
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but we cannot find a primitive of f . Thus we try to get the integrand in a more

convenient form with a suitable substitution y = y(x) = g(x), where we now assume

g to be one-to-one so that it has an inverse g−1. Then the substitution

y = y(x) = g(x) ⇔ x = x(y) = g−1(y),

and, from differentiating,

dy

dx
=

dg(x)

dx
= g′(x) ⇒ dy = g′(x) dx,

yield ∫ d

c

f(y) dy =

∫ g−1(d)

g−1(c)

f
(
g(x)

)
g′(x) dx,

where the new boundaries x(c) = g−1(c) an x(d) = g−1(d) have been determined

with the inverse function x = x(y) = g−1(y).

We observe here that, of course, we can also use integration by substitution to

find a primitive of a function f by evaluating an indefinite integral of f .

Now we will discuss many examples. In doing so we will encounter different types of

integrals that can be evaluated with integration by substitution. The trick is to find

a suitable substitution and this is largely practice and experience. For this

reason it is essential that you attempt as many problems from the exercise sheets as

possible. If you are already confident about the new methods it is also a good idea

to not just read the examples in the lecture notes but instead to attempt to solve

them yourself before you look at the provided solution.

Example 5.32 (integration by substitution)

Evaluate the integral ∫ 3

1

1

2 x − 1
dx.

Solution: Since 1/y is the derivative of the (natural) logarithm ln(|y|), we choose

the substitution

y = y(x) = 2 x − 1 ⇒ dy

dx
= 2 ⇒ dx =

1

2
dy,

which yields the new boundaries y(1) = 2 × 1 − 1 = 1 and y(3) = 2 × 3 − 1 = 5.

Performing the substitution in the integral yields

∫ 3

1

1

2 x − 1
dx =

∫ 5

1

1

y

1

2
dy =

1

2
ln(|y|)|51 =

ln(5) − ln(1)

2
=

ln(5)

2
. 2
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Example 5.33 (real powers of affine linear functions)

Find all primitives/antiderivatives to the functions

(a) f(x) = (3 x+5)7, where x > − 5

3
; (b) h(x) = (1+2x)−1/4, where x > − 1

2
.

Solution: Since an indefinite integral defines a primitive/antiderivative, we deter-

mine

(a)

∫ x

0

(3 t + 5)7 dt (b)

∫ x

0

(1 + 2 t)−1/4 dt,

where it should be noted that the choice of the lower boundary value of the integrals

is arbitrary. To evaluate the integral in (a), we choose the substitution

y = y(t) = 3 t + 5 ⇒ dy

dt
= 3 ⇒ dt =

1

3
dy,

and obtain new boundaries y(0) = 3×0+5 = 5 and y(x) = 3 x+5. Thus we obtain

from integration by substitution and (y8)′ = 8 y7

∫ x

0

( 3 t + 5︸ ︷︷ ︸
= y

)7 dt︸︷︷︸
= (1/3) dy

=

∫ 3x+5

5

y7 1

3
dy =

1

24

∫ 3x+5

5

8 y7 dy

=
y8

24

∣∣∣∣
3x+5

5

=
(3 x + 5)8

24
− 58

24
.

Since all primitives/antiderivatives of f differ only by constants we see that all

primitives of f are of the form

F (x) =
(3 x + 5)8

24
+ c, with a constant c ∈ R.

To evaluate the second integral, we set

y = y(t) = 1 + 2 t ⇒ dy

dt
= 2 ⇒ dt =

1

2
dy,

and the new boundaries of the integral are y(0) = 1 + 2× 0 = 1 and y(x) = 1 + 2 x.

Thus we obtain from (y3/4)′ = (3/4) y−1/4 and integration by substitution
∫ x

0

( 1 + 2 t︸ ︷︷ ︸
= y

)−1/4 dt︸︷︷︸
= (1/2) dy

=

∫ 1+2x

1

y−1/4 1

2
dy =

2

3

∫ 1+2x

1

3

4
y−1/4 dy

=
2

3
y3/4

∣∣1+2x

1
=

2

3
(1 + 2 x)3/4 − 2

3
.

Since all primitives/antiderivatives of h differ only by constants we see that all

primitives of h are of the form

H(x) =
2

3
(1 + 2 x)3/4 + c, with a constant c ∈ R. 2
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Remark 5.34 (check your primitive/antiderivative by differentiating!)

After working out a primitive, it is a good idea to test you primitive by differ-

entiating it. For example, differentiating the answer in Example 5.33 (a) with the

chain rule gives

d

dx

[
(3 x + 5)8

24
+ c

]
=

8 (3x + 5)7

24
3 = (3x + 5)7,

which is the integrand in Example 5.33 (a) as required.

Example 5.35 (integral of
(
sin(x)

)5
cos(x))

Show that ∫ π/2

0

(
sin(x)

)5
cos(x) dx =

1

6
.

Solution: We substitute y = y(x) = sin(x). Then

dy

dx
= cos(x) ⇒ dy = cos(x) dx

and y(0) = sin(0) = 0, y(π/2) = sin(π/2) = 1. Performing the substitution, we

obtain
∫ π/2

0

(
sin(x)

)5
cos(x) dx =

∫ π/2

0

(
sin(x)

)5
︸ ︷︷ ︸

= y5

cos(x) dx︸ ︷︷ ︸
= dy

=

∫ 1

0

y5 dy =
y6

6

∣∣∣∣
1

0

=
1

6
,

as claimed. 2

Remark 5.36 (integral boundaries can be dropped if we want a primitive)

If we want a primitive/antiderivative, then we may drop the lower and upper bound-

ary of the integral, but we have to keep track of our substitutions and have

to substitute ‘backwards’ after evaluation of the integral!

We demonstrate this for the function f(x) = (3 x + 5)7 for which we want to find a

primitive in Example 5.33 (a). If we write the integral without the lower and upper

boundary and use as before the substitution

y = y(x) = 3 x + 5,
dy

dx
= 3 ⇒ 1

3
dy = dx,

then we find that
∫

(3 x + 5)7 dx =

∫
y7 1

3
dy =

1

24

∫
8 y7 dy =

y8

24
+ c =

(3 x + 5)8

24
+ c,

where it is crucial that we have substituted back y = 3 x + 5 in the last

step! If we use the laxer notation for indefinite integrals without boundaries then

we will automatically add an (integration) constant c ∈ R.
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From now on we will also use the laxer notation of the indefinite integral without a

lower and upper boundary, as explained in the last remark. We use this notation in

the next examples.

Example 5.37 (primitives/antiderivatives of
(
sin(x)

)2
cos(x))

Find all primitives/antiderivatives of the function f : R → R, given by

f(x) =
(
sin(x)

)2
cos(x).

Solution: A primitive/antiderivative of the function f(x) =
(
sin(x)

)2
cos(x) is given

by the indefinite integral ∫ (
sin(x)

)2
cos(x) dx.

We use the substitution

y = y(x) = sin(x),
dy

dx
= cos(x) ⇒ dy = cos(x) dx,

and get

∫ (
sin(x)

)2
cos(x) dx =

∫ (
sin(x)

)2
︸ ︷︷ ︸

= y2

cos(x) dx︸ ︷︷ ︸
= dy

=

∫
y2 dy =

y3

3
+c =

1

3

(
sin(x)

)3
+c.

Thus all primitives/antiderivatives of f(x) =
(
sin(x)

)2
cos(x) are of the form

F : R → R, F (x) =
1

3

(
sin(x)

)3
+ c,

with some constant c ∈ R. 2

Example 5.38 (primitives/antiderivatives and integral of 1/
√

1 − x2)

Find all primitives/antiderivatives of the function f : (−1, 1) → R, given by

f(x) =
1√

1 − x2
, x ∈ (−1, 1),

and evaluate the integral ∫ 1/2

−1/2

1√
1 − x2

dx.

Solution: We compute the indefinite integral

∫
1√

1 − x2
dx
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with the substitution

x = x(y) = sin(y) ⇔ y = y(x) = arcsin(x);
dx

dy
= cos(y) ⇒ dx = cos(y) dy.

(5.21)

Note that sin : [−π/2, π/2] → [−1, 1] is one-to-one and has range [−1, 1], and thus

the substitution (5.21) is legitimate. We find that
∫

1√
1 − x2

dx =

∫
1√

1 −
(
sin(y)

)2 cos(y) dy. (5.22)

We have 1 −
(
sin(y)

)2
=
(
cos(y)

)2
, and thus

√
1 −

(
sin(y)

)2
= cos(y), where we

have used that cos(y) ≥ 0 for all y ∈ [−π/2, π/2] when taking the root. Thus we

obtain
∫

1√
1 −

(
sin(y)

)2 cos(y) dy =

∫
cos(y)

cos(y)
dy =

∫
1 dy = y = arcsin(x) + c. (5.23)

From (5.22) and (5.23), we see that all primitives/antiderivatives of the function

f(x) = 1/
√

1 − x2 are given by

F (x) = arcsin(x) + c,

with some constant c ∈ R.

Now we can use the fundamental theorem of calculus (see Theorem 5.15) to evaluate

the definite integral

∫ 1/2

−1/2

1√
1 − x2

dx = arcsin(x)|1/2
−1/2 = arcsin(1/2) − arcsin(−1/2) =

π

6
− −π

6
=

π

3
,

and find that the value of the definite integral is π/3. 2

Remark 5.39 (integrand 1/
√

a2 − x2)

In analogy to the last example, the indefinite integral
∫

1√
a2 − x2

dx, x ∈ (−a, a), with a constant a ∈ R, a > 0.

can be computed with the substitution x = x(y) = a sin(x).

Example 5.40 (indefinite integral of 1/
√

x2 − a2)

Evaluate the indefinite integral
∫

1√
x2 − a2

dx, where x > a with a ∈ R, a > 0,
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with the substitution x = a cosh(y), where y > 0.

Solution: We first discuss why this is useful. Letting x = a cosh(y), where y > 0,

the denominator becomes

√
x2 − a2 =

√
a2
(
cosh(y)

)2 − a2 =

√
a2
[(

cosh(y)
)2 − 1

]

and using
(
cosh(y)

)2 −
(
sinh(y)

)2
= 1, thus

(
cosh(y)

)2 − 1 =
(
sinh(y)

)2
, we find

that (use sinh(y) > 0 for y > 0)

√
x2 − a2 =

√
a2
[(

cosh(y)
)2 − 1

]
=

√
a2
(
sinh(y)

)2
= a sinh(y).

We see that the denominator simplifies considerably. For y > 0, the function x =

x(y) = a cosh(y) is one-to-one with range (0,∞), and so the substitution x = x(y) =

a cosh(y), or equivalently y = arccosh(x/a), makes sense. We find

dx

dy
= a sinh(y) ⇒ dx = a sinh(y) dy,

and thus for y > 0
∫

1√
x2 − a2

dx =

∫
1

a sinh(y)
a sinh(y) dy =

∫
1 dy = y + c = arccosh(x/a) + c,

where c ∈ R is an arbitrary constant. 2

Remark 5.41 (integral of 1/
√

x2 + a2)

To evaluate the indefinite integral
∫

1√
x2 + a2

dx, where a > 0,

use the substitution x = x(y) = a sinh(y) or equivalently y = y(x) = arcsinh(x/a).

Example 5.42 (indefinite integral of 1/(x2 + a2))

To evaluate the indefinite integral
∫

1

x2 + a2
dx where x ∈ R and a > 0,

use the substitution x = a tan(y), or equivalently y = arctan(x/a).

Solution: We first work out the denominator with the substitution x = a tan(y).

x2 + a2 = a2
(
tan(y)

)2
+ a2 = a2

[(
tan(y)

)2
+ 1
]

= a2

(
sin(y)

)2
+
(
cos(y)

)2
(
cos(y)

)2 ,
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and using
(
sin(y)

)2
+
(
cos(y)

)2
= 1, we find that

x2 + a2 =
a2

(
cos(y)

)2 ⇒ 1

x2 + a2
=

(
cos(y)

)2

a2
.

The substitution x = x(y) = a tan(y), or equivalently y = y(x) = arctan(x/a), is

legitimate because tan : (−π/2, π/2) → R is one-to-one with range R. We have

dx

dy
=

a
(
cos(y)

)2 ⇒ dx =
a

(
cos(y)

)2 dy.

Thus the substitution yields
∫

1

x2 + a2
dx =

∫ (
cos(y)

)2

a2

a
(
cos(y)

)2 dy =

∫
1

a
dy =

y

a
+ c =

arctan(x/a)

a
+ c,

where c ∈ R is an arbitrary constant. 2

5.6 Integration by Parts

The method of integration by parts follows from the product rule for differ-

entiation (see Lemma 3.15):

d

dx

[
f(x) g(x)

]
=
[
f(x) g(x)

]′
= f ′(x) g(x) + f(x) g′(x).

Integrating on both sides over the interval [a, b] yields

f(x) g(x)|ba =

∫ b

a

[
f(x) g(x)

]′
dx =

∫ b

a

f ′(x) g(x) dx +

∫ b

a

f(x) g′(x) dx,

and thus after rearranging
∫ b

a

f ′(x) g(x) dx = f(b) g(b) − f(a) g(a) −
∫ b

a

f(x) g′(x) dx.

Often we find the abbreviated notation

f(x) g(x)|ba = f(b) g(b) − f(a) g(a).

Theorem 5.43 (integration by parts)

Let f : A → B and g : A → B be smooth enough functions, and let [a, b] ⊂ A.

Then we have

∫ b

a

f ′(x) g(x) dx = f(b) g(b) − f(a) g(a) −
∫ b

a

f(x) g′(x) dx. (5.24)
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This result is useful for integrating functions of the form h(x) = f ′(x) · g(x)

for which f(x) · g′(x) is easier to integrate than h(x).

Remark 5.44 (integration by parts for indefinite integrals)

Before we discuss examples, we mention that we can also use integration by parts

for indefinite integrals, that is,

∫ x

x0

f ′(t) g(t) dt = f(t) g(t)|xx0
−
∫ x

x0

f(t) g′(t) dt,

or in the laxer notation without boundary values

∫
f ′(x) g(x) dx = f(x) g(x) −

∫
f(x) g′(x) dx.

Now we discuss several examples. To perform integration by parts for an integral

of a function h, you need to decide how you decompose h as a product h(x) =

f ′(x) g(x) of suitable functions f ′ and g. The choice is normally determined by

the fact that we know the primitive/antiderivative f of f ′ and that it offers benefits

for the remaining integral to differentiate g. However, we have only performed a

‘useful’ integration by parts if the integral on the right-hand side of (5.24) is simpler

to integrate than the original integral. Often we need to integrate repeatedly by

parts before the original integral is evaluated. As with integration by substitution,

finding a suitable way of integrating by parts is largely experience and practice.

Example 5.45 (definite integral and primitive/antiderivative of x e−x)

Evaluate the integral ∫ 1

0

x e−x dx,

and find all primitives/antiderivatives of f(x) = x e−x.

Solution: We use integration by parts (5.24) with f(x) = −e−x and g(x) = x and

thus f ′(x) = e−x and g′(x) = 1. We find

∫ 1

0

x e−x dx = −x e−x|10+
∫ 1

0

e−x dx = −x e−x|10−e−x|10 = −e−1+0−e−1+1 = 1−2 e−1.

With the same integration by parts, we find that evaluation of an indefinite integral

of x e−x yields

∫
x e−x dx = −x e−x +

∫
e−x dx = −x e−x − e−x + c = −(x + 1) e−x + c,
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and thus any primitive/antiderivative of h(x) = x e−x is of the form

H(x) = −(x + 1) e−x + c,

with a constant c ∈ R. We differentiate to test our result: from the product rule(
− (x + 1) e−x + c

)′
= (−1) e−x − (x + 1) (−e−x) = x e−x, as expected. 2

Remark 5.46 (differentiate to test your primitive/antiderivative!)

If you determined a primitive/antiderivative H of a function h, it is always useful

to differentiate the primitive/antiderivative and check that indeed H ′ = h.

Example 5.47 (integral of x sinx)

Evaluate the integral ∫ π

0

x sin(x) dx.

Solution: We use integration by parts (5.24) with f(x) = − cos(x), g(x) = x and

thus f ′(x) = sin(x), g′(x) = 1. Then, using cos(π) = −1 and sin(0) = sin(π) = 0,

∫ π

0

x sin(x) dx = −x cos(x)|π0 +

∫ π

0

cos(x) dx

= −π cos(π) + sin(x)|π0 = −π cos(π) + sin(π) − sin(0) = π.

Thus we have
∫ π

0

x sin(x) dx = π. 2

Example 5.48 (integral of ex sin x)

Evaluate the integral

I =

∫ π

0

ex sin(x) dx.

Solution: This is an example of an integral that cannot be directly evaluated.

Instead, it can be ‘solved’ via a simple equation, as follows. We apply integration

by parts (5.24) with f(x) = ex, g(x) = sin(x), and thus f ′(x) = ex and g′(x) =

cos(x). Then

∫ π

0

ex sin(x) dx = ex sin(x)|π0 −
∫ π

0

ex cos(x) dx

= eπ sin(π) − e0 sin(0) −
∫ π

0

ex cos(x) dx

= −
∫ π

0

ex cos(x) dx, (5.25)
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where we have used sin(0) = sin(π) = 0. Now we apply integration by parts

(5.24) a second time with f(x) = ex, g(x) = cos(x), and thus f ′(x) = ex and

g′(x) = − sin(x). Then, using cos(π) = −1 and cos(0) = 1,

−
∫ π

0

ex cos(x) dx = −ex cos(x)|π0 −
∫ π

0

ex sin(x) dx

= −eπ cos(π) + e0 cos(0) −
∫ π

0

ex sin(x) dx

= eπ + 1 −
∫ π

0

ex sin(x) dx. (5.26)

Combining (5.25) and (5.26), we obtain
∫ π

0

ex sin(x) dx = eπ + 1 −
∫ π

0

ex sin(x) dx. (5.27)

The original integral I occurs in (5.27) again on the right-hand side with a negative

sign. We add the original integral I on both sides and divide afterwards by 2 to

obtain

2 I = 2

∫ π

0

ex sin(x) dx = eπ + 1 ⇒ I =

∫ π

0

ex sin(x) dx =
eπ + 1

2
. 2

The trick used to evaluate the integral in the last example is common for a certain

class of (definite or indefinite) integrals. One performs integration by parts

twice and obtains

I = C − α I,

where I denotes the original integral, α is a positive real number, and C is a real

value in the case of a definite integral or a function in the case of an indefinite

integral, respectively. Now we can rearrange to determine I and find, by adding α I

on both sides and then dividing by (1 + α),

I = C − α I ⇒ I + α I = (1 + α) I = C ⇒ I =
C

1 + α
.

Example 5.49 (primitives/antiderivatives and integral of lnx)

Find all primitives/antiderivatives of h(x) = ln(x) and evaluate the integral
∫ 2

1

ln(x) dx.

Solution: With f(x) = x and g(x) = ln(x), and thus f ′(x) = 1 and g′(x) = 1/x, we

have from the integration by parts formula (5.24)
∫

ln(x) dx = x ln(x) −
∫

x
1

x
dx = x ln(x) −

∫
1 dx = x ln(x) − x + c,
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with an arbitrary constant c. Thus every primitive/antiderivative of h(x) = ln(x)

is of the form

H(x) = x ln(x) − x + c = x
(
ln(x) − 1

)
+ c,

with a constant c ∈ R. From the fundamental theorem of calculus (see Theo-

rem 5.15)

∫ 2

1

ln(x) dx = H(x)|21 =
(
x ln(x) − x + c

)∣∣2
1

= 2 ln(2) − 2 + c −
(
1 ln(1) − 1 + c

)
= 2 ln(2) − 1. 2

Example 5.50 (primitives of
(
sin(x)

)2
+ 2 x + 3)

Find all primitives/antiderivatives of the continuous function h : R → R, given by

h(x) =
(
sin(x)

)2
+ 2 x + 3.

Solution: We want to calculate the indefinite integral of h(x) =
(
sin(x)

)2
+ 2 x + 3

given by ∫ [(
sin(x)

)2
+ 2 x + 3

]
dx.

From the linear properties of the integral (see Lemma 5.23), from (x)′ = 1 and

(x2)′ = 2x, and from the fundamental theorem of calculus (see Theorem 5.15), we

find that
∫ [(

sin(x)
)2

+ 2 x + 3
]
dx =

∫ (
sin(x)

)2
dx +

∫
2 x dx +

∫
3 dx (5.28)

=

∫ (
sin(x)

)2
dx + x2 + 3 x + c1, (5.29)

with a constant c1 ∈ R. From the integration by parts formula (5.24) we have, with

f(x) = − cos(x), g(x) = sin(x), and thus f ′(x) = sin(x), g′(x) = cos(x),

∫ (
sin(x)

)2
dx = − cos(x) sin(x) +

∫ (
cos(x)

)2
dx. (5.30)

Now we use that
(
sin(x)

)2
+
(
cos(x)

)2
= 1 and replace

(
cos(x)

)2
= 1 −

(
sin(x)

)2

in the remaining integral in (5.30). Thus

∫ (
sin(x)

)2
dx = − cos(x) sin(x) +

∫ [
1 −

(
sin(x)

)2]
dx

= − cos(x) sin(x) +

∫
1 dx −

∫ (
sin(x)

)2
dx
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= − cos(x) sin(x) + x + c2 −
∫ (

sin(x)
)2

dx,

with a constant c2 ∈ R. Adding the original integral on both sides yields

2

∫ x

0

(
sin(x)

)2
dt = x − cos(x) sin(x) + c2

⇒
∫ x

0

(
sin(x)

)2
dt =

1

2

[
x − cos(x) sin(x)

]
+

c2

2
. (5.31)

Thus we have from (5.29) and (5.31) that

∫ [(
sin(x)

)2
+ 2 x + 3

]
dx =

1

2

[
x − cos(x) sin(x)

]
+

c2

2
+ x2 + 3x + c1

= x2 +
7

2
x − 1

2
cos x sinx + c,

with an arbitrary real constant c = c1+c2/2. Therefore any primitive/antiderivative

of h(x) =
(
sin(x)

)2
+ 2 x + 3 is of the form

H(x) = x2 +
7

2
x − 1

2
cos x sinx + c,

with some constant c ∈ R. 2

Example 5.51 (integral of
(
cos(x)

)−2
)

Find all primitives/antiderivatives of the function h : (−π
2
, π

2
) → R, given by

h(x) =
(
sec(x)

)2
=

1
(
cos(x)

)2 ,

and evaluate the definite integral

∫ π/4

−π/4

1
(
cos(x)

)2 dx.

Solution: To calculate the indefinite integral of h(x) = (cos x)−2 given by

∫
1

(
cos(x)

)2 dx,

we use that 1 =
(
cos(x)

)2
+
(
sin(x)

)2
to rewrite the indefinite integral as follows

∫
1

(
cos(x)

)2 x =

∫ (
cos(x)

)2
+
(
sin(x)

)2
(
cos(x)

)2 dx =

∫ (
1 +

(
sin(x)

)2
(
cos(x)

)2

)
dx.
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Thus from the linear properties of the integral

∫
1

(
cos(x)

)2 dx =

∫
1 dx +

∫ (
sin(x)

)2
(
cos(x)

)2 dx = x + c1 +

∫ (
sin(x)

)2
(
cos(x)

)2 dx, (5.32)

with a constant c1 ∈ R. We apply the integration by parts formula (5.24) with

f(x) = 1/ cos(x), g(x) = sin(x), and thus f ′(x) = sin(x)/
(
cos(x)

)2
, g′(x) = cos(x)

to the remaining integral, and obtain

∫ (
sin(x)

)2
(
cos(x)

)2 dx =
sin(x)

cos(x)
−
∫

1

cos(x)
cos(x) dx =

sin(x)

cos(x)
−
∫

1 dx = tan(x)−x+c2,

(5.33)

with a constant c2 ∈ R. Substituting (5.33) into (5.32) yields

∫
1

(
cos(x)

)2 dx = x + c1 + tan(x) − x + c2 = tan(x) + c,

with an arbitrary constant c = c1 + c2. Thus all primitives/antiderivatives of the

function h(x) = 1/
(
cos(x)

)2
are of the form

H(x) = tan(x) + c, x ∈
(
−π

2
,
π

2

)
,

with some constant c ∈ R. From the fundamental theorem of calculus (see Theorem

5.15), we have

∫ π/4

−π/4

1
(
cos(x)

)2 dx = H(x)|π/4
−π/4 =

(
tan(x) + c

)∣∣π/4

−π/4
= tan(π/4) − tan(−π/4),

and, since sin(π/4) = cos(π/4) = 1/
√

2 and sin(−π/4) = −1/
√

2, cos(−π/4) =

1/
√

2, we have that tan(π/4) = 1 and tan(−π/4) = −1. Thus

∫ π/4

−π/4

1
(
cos(x)

)2 dx = tan(π/4) − tan(−π/4) = 1 − (−1) = 2. 2

5.7 Examples That Need More Than One Method

of Integration

Often there is not one unique way to evaluate a definite integral or compute a

primitive/antiderivative as an indefinite integral. A few integrals can be evaluated
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with either integration by substitution or integration by parts, and to evaluate some

integrals you will need both integration by substitution and integration by parts.

We now give two examples where both integration by substitution and inte-

gration by parts are needed.

Example 5.52 (integral of x5 sin(x3))

Evaluate the integral ∫ 3√2π

0

x5 sin(x3) dx.

Solution: With the substitution

y = y(x) = x3,
dy

dx
= 3 x2 ⇔ dy = 3 x2 dx,

we obtain, with the new boundaries y(0) = 0 and y( 3
√

2π) = 2π,

∫ 3√2π

0

x5 sin(x3) dx =
1

3

∫ 3√2π

0

x3
︸︷︷︸
= y

sin(x3)︸ ︷︷ ︸
= sin(y)

3x2 dx︸ ︷︷ ︸
= dy

=
1

3

∫ 2π

0

y sin(y) dy.

Now we use the integration by parts formula (5.24) with f(y) = − cos(y), g(y) = y

and thus f ′(y) = sin(y) and g′(y) = 1 and obtain

1

3

∫ 2π

0

y sin(y) dy =
1

3

(
−y cos(y)|2π

0 +

∫ 2π

0

cos(y) dy

)

=
1

3

[
− 2π cos(2π) + 0 cos(0)

]
+

1

3
sin(y)

∣∣2π

0

= − 2π

3
+

1

3

[
sin(2π) − sin(0)

]
= − 2π

3
,

where we have used cos(0) = cos(2π) = 1 and sin(0) = sin(2π) = 0. Thus

∫ 3√2π

0

x5 sin(x3) dx = − 2π

3
. 2

Example 5.53 (integral of e2x cos(ex − 1))

Evaluate the integral ∫ 1

0

e2x cos(ex − 1) dx.

Solution: The substitution

y = y(x) = ex − 1 ⇔ ex = y + 1,
dy

dx
= ex ⇔ dy = ex dx,
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with the new boundaries y(0) = e0 − 1 = 0 and y(1) = e − 1, yields

∫ 1

0

e2x cos(ex −1) dx =

∫ 1

0

ex
︸︷︷︸
= y+1

cos(ex − 1)︸ ︷︷ ︸
= cos(y)

ex dx︸ ︷︷ ︸
= dy

=

∫ e−1

0

(y +1) cos(y) dy. (5.34)

Now we use the integration by parts formula (5.24), with f(y) = sin(y), g(y) = y+1

and thus f ′(y) = cos(y) and g′(y) = 1, and obtain

∫ e−1

0

(y + 1) cos(y) dy = (y + 1) sin(y)|e−1
0 −

∫ e−1

0

sin(y) dy

= e sin(e − 1) − sin(0) + cos(x)|e−1
0

= e sin(e − 1) + cos(e − 1) − cos(0)

= e sin(e − 1) + cos(e − 1) − 1, (5.35)

where we have used sin(0) = 0 and cos(0) = 1. From (5.34) and (5.35) we obtain

∫ 1

0

e2x cos(ex − 1) dx = e sin(e − 1) + cos(e − 1) − 1. 2

Application 5.54 (gravitational potential of the earth)

The gravitational potential of the earth (which is caused by the gravitational

force) at a point is defined numerically as equal to the work done in moving a unit

mass from infinity to this point. The gravitational force (or force of attrac-

tion) on a unit mass outside the earth is given by

F (r) =
G M

r2
,

where r is the distance from the earth’s centre, G is the gravitational constant, and

M is the mass of the earth (assumed to be located at the earth’s centre). The work

for moving the mass is given by

work = force × distance in the direction of the force

Since the gravitational force depends on the distance r and changes continuously,

the work done in moving a unit mass from infinity to the point with

distance r is given by the integral

∫ r

∞
F (x) dx =

∫ r

∞

G M

x2
dx = lim

b→∞

∫ r

b

G M

x2
dx = lim

b→∞
−
∫ b

r

G M

x2
dx

= lim
b→∞

G M

x

∣∣∣∣
b

r

= lim
b→∞

[
G M

b
− G M

r

]
= − G M

r
.
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Thus the gravitational potential of the earth at any point with distance r from

the earth’s centre is given by

V (r) = − G M

r
.



Chapter 6

Further Integration

In this chapter we learn several applications of integration that are important

for engineering and physics. The first such application is finding the average of a

function which is discussed in Section 6.1. For example we may want to know the

average speed of a car driving from London to Brighton or the average temperature

during the month January. The next application is the calculation of the area

between the graphs of two functions with the help of the integral which is dis-

cussed in Section 6.2. This allows us to calculate areas bounded by rather general

shapes. In Section 6.3, we discuss a physical application of integration, namely the

work done by moving an object in the presence of a force. This application

is directly derived from the geometric interpretation of the integral as the area under

the curve. In Section 6.4, we learn the calculation of volumes of revolution. A

volume of revolution is any three-dimensional body that is rotationally symmetric

about an axis. Examples of a volumes of revolution are, for example, a cylinder,

a sphere, and a cone. In Section 6.5, we discuss the mass of a rod with con-

stant cross-sectional area, and in Sections 6.6 and 6.7, we learn how to find (the

x-coordinate) of the centre of mass and the moment of inertia of three dimen-

sional bodies with certain symmetries, respectively.

6.1 Average Value of a Function on an Interval

The simplest application of integration is to find the average of a (continuous)

function on an interval [a, b].

143
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As a motivation, we want to determine the average temperature over one cal-

ender week. To get an approximation of the average temperature over one calender

week, we might take the sum of the temperatures at the start of each hour and take

the average, that is the sum of all 7 × 24 temperatures divided by 7 × 24. More

precisely, if f(t) describes the temperature at the time t measured in hours, then

we would take the average

1

7 × 24

7×24∑

k=1

f(k − 1) =
1

(7 × 24 − 0)

7×24∑

k=1

f(k − 1) × 1. (6.1)

(Note that we have f(k − 1) because we measure the temperature at the beginning

of each hour [k − 1, k].) Keeping in mind that one week (measured in hours) is the

time interval [0, 7 × 24], we can interpret (6.1) as the sum of the areas of the

rectangles with height f(k− 1) and width 1, where k = 1, 2, . . . 7× 24, divided

by the length time interval [0, 7 × 24]. The sum of the areas of these rectangles is

an approximation of the area under the curve.

t  (in hours)

f(t)

t t t t t t t t

t  = 24x79

1 2 3 4 5 6 7 80t  =0

Figure 6.1: The approximation (6.2) (with N = 9) of the temperature over one

calender week.

The average of the temperatures taken every minute would be an even better ap-

proximation of the temperature. In general, if we have N time measurements taken

at the times tk = k ∆t, k = 0, 1, 2, . . . , N − 1, with ∆t = (7 × 24)/N , then an

approximation of the average temperature is given by

1

N

N∑

k=1

f(tk−1) =
1

(7 × 24 − 0)

N∑

k=1

f

(
(k − 1)

7 × 24

N

)
× 7 × 24

N
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=
1

(7 × 24 − 0)

N∑

k=1

f
(
(k − 1) ∆t

)
× ∆t, (6.2)

where we have used tk−1 = (k − 1) ∆t = (k − 1) (7 × 24)/N . From the last rep-

resentation in (6.2), we see that, apart from the factor 1/(7 × 24) in front of the

sum, the sum can be interpreted as the sum of the areas of the rectangles over[
(k − 1) ∆t, k ∆t

]
with bottom width ∆t and height f(tk−1) = f

(
(k − 1)∆t

)
. This

is illustrated in Figure 6.1, and we see that the sum of the areas of these rectangles

is an approximation for the integral of f(t) over the time interval [0, 7 × 24].

Thus if we shrink the width ∆t of the intervals (between the measured temperatures)

to zero, the sum in (6.2) becomes the integral. Thus the average temperature

during the calender week is given by the integral

1

(T − 0)

∫ T

0

f(t) dt, with T = 7 × 24.

The considerations for finding the average temperature over a calender week moti-

vate the following lemma.

Lemma 6.1 (average value of a function)

Let A, B ⊂ R, and let [a, b] ⊂ A. Let f : A → B be a continuous function. The

average value of f on the interval [a, b] is given by

average value of f on [a, b] =
area under graph over [a, b]

b − a
=

1

b − a

∫ b

a

f(x) dx.

Remark 6.2 (another visualization of the average)

From rearranging we see that

(
average value of f on [a, b]

)
× (b − a) =

∫ b

a

f(x) dx. (6.3)

that is, the rectangular box with a horizontal side of length (b − a) and

height given by the average function value of f over [a, b] has the same

area as the area under the graph for x ∈ [a, b].

Example 6.3 (average value of an affine linear function)

Find the average value of the affine linear function f(x) = mx + c on an arbitrary

interval [a, b].
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Solution: The average value of f(x) = mx + c on the interval [a, b] is given by

1

b − a

∫ b

a

f(x) dx =
1

b − a

∫ b

a

(
mx + c

)
dx =

1

b − a

(m

2
x2 + c x

)∣∣∣
b

a

=
1

b − a

[(m

2
b2 + c b

)
−
(m

2
a2 + c a

)]

=
1

b − a

[m
2

(
b2 − a2

)
+ c (b − a)

]

=
1

b − a

[m
2

(b − a)(b + a) + c (b − a)
]

=
m

2
(b + a) + c.

Inspection of the average value of f(x) = mx + c on [a, b] shows that this value is

also given by the average of f(b) and f(a), that is,

1

2

[
f(b) + f(a)

]
=

1

2

[(
mb + c

)
+
(
ma + c

)]
=

1

2

[
m (b + a) + 2 c

]
=

m

2
(b + a) + c.

y

xa b(b+a)/2

[f(b)+f(a)]/2

f(x) =
 m x + c

c

Figure 6.2: Average value 1
b−a

∫ b

a
f(x) dx =

[
f(b) + f(a)

]
/2 of the affine linear

function f(x) = mx + c on the interval [a, b]. The picture shows the area under the

graph for x ∈ [a, b] and the rectangle with the same area, and it illustrates why in

the special case of an affine linear function we have the average value
[
f(b)+f(a)

]
/2.

That we can obtain the average of an affine linear function f(x) = mx + c on [a, b]

by taking the average
[
f(b) + f(a)

]
/2 of the the values f(b) and f(a) at the right
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and left endpoint of the interval is due to the fact that the graph is a straight line

(see Figure 6.2 for illustration). For other functions this not true, that is, the

average values on an interval cannot be obtained by taking the average

of the values at the endpoints of the interval! 2

We give three examples.

Example 6.4 (average value of f(x) = x2 on [1, 2])

Calculating the average value of the function f(x) = x2 on [1, 2] yields

1

2 − 1

∫ 2

1

x2 dx =
x3

3

∣∣∣∣
2

1

=
8

3
− 1

3
=

7

3
,

and we see that the average value of f(x) = x2 on [1, 2] is 7/3. 2

In Figure 6.3 we have plotted the area under the graph and the rectangle with the

same area for Example 6.4.

0

x

32.521.51

y

0.5

8

0

6

4

2

Figure 6.3: The area
∫ 2

1
x2 dx under the graph of f(x) = x2 for x ∈ [1, 2], and the

rectangle over [1, 2] with height given by the average value of f(x) = x2 on [1, 2].

This rectangle has also the area
∫ 2

1
x2 dx (see formula (6.3)).

Example 6.5 (average value of f(x) = sin(x) on [0, 2π])

Calculating the average value of the function f(x) = sin(x) on [0, 2π] yields

1

2π − 0

∫ 2π

0

sin(x) dx =
1

2π

(
−cos(x)

)∣∣2π

0
=

1

2π

[
−cos(2π)+cos(0)

]
=

1

2π

[
−1+1

]
= 0.
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and we see that the average value of f(x) = sin(x) on [0, 2π] is 0. 2

In Figure 6.4 we have plotted the area under the graph and the rectangle with the

same area for Example 6.5.

0

y

1.5

1

0.5

x

0

-0.5

8

-1

-1.5

642

Figure 6.4: The area
∫ 2π

0
sin(x) dx under the graph of sin(x) for x ∈ [0, 2π], and the

rectangle over [0, 2π] with the height given by the average value of f(x) = sin(x) on

[0, 2π]. This rectangle has also the area
∫ 2π

0
sin(x) dx (see formula (6.3)). Note that

since the average value of f(x) = sin(x) on [0, 2π] is zero, the rectangle has height

zero and is therefore simply the straight line g(x) = 0, x ∈ [0, 2π].

Example 6.6 (average value of f(x) = ex on [−1, 1])

Calculating the average value of the function f(x) = ex on [−1, 1] yields

1

1 − (−1)

∫ 1

−1

ex dx =
1

2
ex
∣∣1
−1

=
1

2

(
e1 − e−1

)
=

1

2

(
e − 1

e

)
,

and we see that the average value of f(x) = ex on [−1, 1] is (e − e−1)/2 ≈ 1.18. 2

In Figure 6.5 we have plotted the area under the graph and the rectangle with the

same area for Example 6.6.
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x

1.510.50-0.5-1-1.5

y

-2

4

3

2

1

0

Figure 6.5: The area
∫ 1

−1
ex dx under the graph of f(x) = ex for x ∈ [−1, 1], and the

rectangle over [−1, 1] with height given by the average value of f(x) = ex on [−1, 1].

This rectangle has also the area
∫ 1

−1
ex dx (see (6.3)).

6.2 Areas Bounded by the Graphs of Two Func-

tions

In this section we discuss how to determine the area between the graphs of two

functions. The method for doing this follows directly for the geometric interpre-

tation of the integral as the area under the graph. Since the method is easiest to

understand for a concrete example, we start with an example to illustrate the idea.

Example 6.7 (area between the graphs of two functions)

Find the area between the graphs of the two functions

g(x) =
1

x
and h(x) = 5 − 4 x.

By the area between the two graphs we mean the finite area bounded by the

the two graphs between its points of intersection.

Solution: A sketch of the graphs of the two functions is given in Figure 6.6.



150 6. Further Integration

We work out the points of intersection of the two functions, by determining all

points for which g(x) = h(x), that is,

1

x
= 5 − 4 x.

Multiplying by x and afterwards dividing by 4 gives

1 = 5 x−4 x2 ⇔ 0 = 4 x2−5 x+1 ⇔ 0 = x2 − 5

4
x+

1

4
=

(
x − 1

4

)
(x−1).

So the graphs of the two functions intersect at x = 1/4 and x = 1. We have that

g(x) =
1

x
< 5 − 4 x = h(x) for all

1

4
< x < 1.

-8

x

21.510.50

y

-0.5

8

-1

4

0

-4

Figure 6.6: The area between the graphs of g(x) = 1/x and h(x) = 5 − 4 x.

This can be seen as follows: We have

g(1/2) =
1

1/2
= 2 < h(1/2) = 5 − 4

1

2
= 5 − 2 = 3,

and, since x = 1/4 and x = 1 are the only points of intersection, we know, from

g(1/2) < h(1/2), that g(x) < h(x) holds for all points x ∈ (1/4, 1).
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The area A between the graphs is thus the area under the graph of h(x) = 5 − 4 x

for x ∈ [1/4, 1] minus the area under the graph of g(x) = 1/x for x ∈ [1/4, 1]. Thus

A =

∫ 1

1/4

h(x) dx −
∫ 1

1/4

g(x) dx =

∫ 1

1/4

[
h(x) − g(x)

]
dx =

∫ 1

1/4

[
(5 − 4 x) − 1

x

]
dx

=
[
5 x − 2 x2 − ln(|x|)

]∣∣1
1/4

=
[
5 − 2 − ln(1)

]
−
[
5

4
− 2

16
− ln

(
1

4

)]

= 3 −
[
9

8
−
(
ln(1) − ln(4)

)]
=

24

8
− 9

8
− ln(4) =

15

8
− ln(4) ≈ 0.49,

where we have used ln(a/b) = ln(a)− ln(b). Thus the area between the graphs from

x = 1/4 to x = 1 is A = 15/8 − ln(4) ≈ 0.49. 2

We formulate the method for finding the finite area between the graphs of two

functions that intersect each other at least twice.

Method 6.8 (for finding the area between the graphs of two functions)

Let g and h be two functions that intersect at two, or more, points.

• Solve g(x) = h(x) for x to find the points of intersection x1 < x2 <

. . . < xn < xn+1 of the two graphs (where by assumption n ≥ 1).

• For each two adjacent points of intersection xk and xk+1, determine whether

g(x) < h(x) or g(x) > h(x) for all x ∈ (xk, xk+1).

• If g(x) < h(x) for all x ∈ (xk, xk+1) calculate the area Ak between the

graphs for x ∈ [xk, xk+1] by evaluating the integral

Ak =

∫ xk+1

xk

[
h(x) − g(x)

]
dx.

If g(x) > h(x) for all x ∈ (xk, xk+1) calculate the area Ak between the

graphs for x ∈ [xk, xk+1] by evaluating the integral

Ak =

∫ xk+1

xk

[
g(x) − h(x)

]
dx.

• The area A between the graphs is the sum of all the areas Ak, that is,

A =
n∑

k=1

Ak.
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Example 6.9 (area between the graphs of two functions)

Find the finite area between the graphs of the functions

f(x) = (x − 1)2 and g(x) = 1.

Solution: We find the the points of intersection by setting f(x) = g(x) and solving

for x.

(x − 1)2 = 1 ⇒ 0 = (x − 1)2 − 1 = (x − 1 − 1)(x − 1 + 1) = (x − 2)x,

and we see that the points of intersection are x = 0 and x = 2. Since we have

(x − 1)2 < 1 for x ∈ (0, 2), we see that f(x) < g(x) for all x ∈ (0, 2). Thus the area

between the graphs is given by

A =

∫ 2

0

g(x) dx −
∫ 2

0

f(x) dx =

∫ 2

0

[
g(x) − f(x)

]
dx =

∫ 2

0

[
1 − (x − 1)2

]
dx

=

[
x − (x − 1)3

3

]∣∣∣∣
2

0

=

[
2 − 1

3

]
−
[
0 − −1

3

]
= 2 − 2

3
=

4

3
.

Thus the area between the graphs of the two functions f(x) = (x−1)2 and g(x) = 1

between x = 0 and x = 2 is given by A = 4/3. 2

y

x

4

1

20

2

31-1

3

0

Figure 6.7: The area between the graphs of f(x) = (x − 1)2 and g(x) = 1.

Example 6.10 (area between the graphs of two functions)

Find the finite area between the graphs of the functions

g(x) = sin(x) and h(x) =
2

π
x.
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Solution: We have plotted the graphs of g(x) = sin(x) and h(x) = 2 x/π in Fig-

ure 6.8. From the picture we can already guess that x = −π/2, x = 0, and x = π/2

are the points of intersection of the two graphs. Indeed, if g(x) = h(x), then

sin(x) =
2

π
x, (6.4)

and (6.4) is satisfied for x = −π/2, x = 0, and x = π/2, since sin(−π/2) = −1,

sin(0) = 0, and sin(π/2) = 1.

20-1-2

y

1

x

31

-2

-3

2

0

-1

Figure 6.8: The area between the graphs of g(x) = sin(x) and h(x) = 2 x/π.

Why are there no other points of intersection?

For x > π/2 we have sin(x) ≤ 1 < 2 x/π, and for x < −π/2 we have sin(x) ≥ −1 >

2 x/π. Thus there are no points of intersection outside the interval [−π/2, π/2].

The points x = −π/2, x = 0, and x = π/2 are the only points of intersection in

the interval [−π/2, π/2] for the following reasons: Since g′(x) =
(
sin(x)

)′
= cos(x)

and g′′(x) =
(
cos(x)

)′
= − sin(x), we see that the function g(x) = sin(x) is strictly

convex downward on [0, π/2]. Thus the straight line connecting
(
0, sin(0)

)
= (0, 0)

with
(
π/2, sin(π/2)

)
= (π/2, 1) lies on the interval (0, π/2) strictly below the graph

of g(x) = sin(x). Since this straight line is just h(x) = 2 x/π for x ∈ [0, π/2], we see

that the functions g(x) = sin(x) and h(x) = 2 x/π intersect on [0, π/2] only in the

endpoints x = 0 and x = π/2 and that g(x) > h(x) for all x ∈ (0, π/2).
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For x ∈ [−π/2, 0] we can show analogously g(x) < h(x) for all x ∈ (−π/2, 0), and

thus x = −π/2 and x = 0 are the only points of intersection in [−π/2, 0].

We have already seen that g(x) > h(x) for x ∈ (0, π/2) and that g(x) < h(x) for

x ∈ (−π/2, 0). Thus the area between the two graphs is given by

A =

∫ 0

−π/2

[
h(x) − g(x)

]
dx +

∫ π/2

0

[
g(x) − h(x)

]
dx

=

∫ 0

−π/2

[
2

π
x − sin(x)

]
dx +

∫ π/2

0

[
sin(x) − 2

π
x

]
dx

=

[
1

π
x2 + cos(x)

]∣∣∣∣
0

−π/2

+

[
− cos(x) − 1

π
x2

]∣∣∣∣
π/2

0

=
[
0 + cos(0)

]
−
[

1

π

π2

4
+ cos(−π/2)

]
+

[
− cos(π/2) − 1

π

π2

4

]
−
[
− cos(0) − 0

]

= 1 − π

4
− π

4
+ 1 = 2 − π

2
≈ 0.43,

where we have used cos(0) = 1 and cos(−π/2) = cos(π/2) = 0. Thus the area

between the two graphs is given by A = 2 − π/2 ≈ 0.43. 2

6.3 Work Done While Moving an Object Acted

on by a Force

In this section we discuss the work done while moving an object in the presence of

a force that acts on this object.

Suppose that a particle is acted on by a force f(x), where x is the position

of the particle. If the distance ∆x is small and the magnitude of the force on the

particle hardly changes as it moves from x to x+∆x, then the work done moving

the particle from x to x + ∆x is approximately

work done = force × distance moved ≈ f(x) × [(x + ∆x) − x] = f(x) × ∆x.

To find the total work done as the particle moves from x = a to x = b (which may

be quite far apart), we split the interval [a, b] up into a large number n of small

pieces of equal length ∆x = (b− a)/n, and sum up the work done while moving the

particle along each subinterval. With the notation

xk = a + k
b − a

n
= a + k ∆x, that is,
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x0 = a, x1 = a +
b − a

n
, . . . xn−1 = a + (n − 1)

b − a

n
, xn = b,

an approximation of the work done moving the particle from x = a to

x = b is given by

W ≈ Wn =
n∑

k=1

f(xk−1)
(
xk − xk−1

)
=

n∑

k=1

f(xk−1) ∆x

=
n∑

k=1

f

(
a + (k − 1)

b − a

n

)
b − a

n
.

We see that the individual terms in the sum are just the areas of the rectangles in

Figure 6.9. Increasing n, or, in other words, shrinking the length ∆x = (b− a)/n of

the subintervals to zero, yields the exact value of the work. From the introduction

of the integral in the previous chapter, we see thus that the exact value of the

work done moving the particle from x = a to x = b is given by the area under

the graph of f(x) for x ∈ [a, b], that is, by the integral

lim
n→∞

Wn =

∫ b

a

f(x) dx.

1 2 3 4 5 6x x x x x x

y

x

f(x)

x
0
=a 7x =b

Figure 6.9: The area of the rectangle over [xk−1, xk] is approximately the work done

while moving the particle in the presence of the force f(x) from x = xk−1 to x = xk.

We note that the movement of a particle in the presence of a force served just as an

example. Whenever we move an object in the presence of a force f(x) from x = a
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to x = b, then
∫ b

a
f(x) dx gives the work done. We note that the force f has to be

a force acting along the straight line of movement.

Thus we have derived that:

(
work done moving an object acted on

by a force f(x) from x = a to x = b

)
= W =

∫ b

a

f(x) dx. (6.5)

Example 6.11 (work done by repelling force of two charged particles)

Suppose that a positively charged particle is fixed at the point x = 0, while another

positively charged particle moves (under the mutual repulsive force of the two par-

ticles) along the x-axis from 10 cm away to 1 m away. Assume that the force on the

second particle at the position x > 0 in metres is

f(x) =
C

x2
, where C = 7.3 × 10−26 N m2.

(Note that N = kg m/s2 stands for Newton, the standard unit for measuring forces.)

Find out the work done while the second particle moves from 10 cm away to 1 m

away from the first particle.

Solution: From (6.5), the total work done is (use 10 cm = 0.1 m)

W =

∫ 1

0.1

C

x2
dx = C

[
− 1

x

]∣∣∣∣
1

0.1

= C

(
−1 +

1

0.1

)

= C (−1 + 10) = 9 C = 6.57 × 10−25.

Thus the total work done is W = 6.57 × 10−25 N m. 2

Example 6.12 (work done by stretching an elastic band)

An elastic band is pulled out steadily through the small distance of 1 cm, and the

force exerted to achieve this increases linearly from 0 N to 10 N (where the physical

unit N = kg m/s2 is called Newton). That the force f exerted increases linearly

from 0 N to 10 N means that f(x) = α x with a suitable constant α ∈ R. Determine

the work that has been exerted to stretch the elastic band 1 cm.

Solution: After expressing 1 cm = 0.01 m in the standard unit meters, we find from

f(0.01) = 10 and f(x) = α x that

10 = f(0.01) = α × 0.01 ⇒ α =
10

0.01
= 1000.

Thus the constant α is given by

α = 1000
N

m
,
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and the force is

f(x) = 1000 x.

The work done is now

W =

∫ 0.01

0

f(x) dx =

∫ 0.01

0

1000 x dx = 1000
x2

2

∣∣∣∣
0.01

0

= 1000
10−4

2
= 0.05,

and we see that the work done is W = 0.05 N m. 2

6.4 Volumes of Revolution

In this section we discuss volumes of revolution which are obtained by rotating

the graph of a function f(x) about the x-axis and considering the volume/solid

body encased the by the rotated graph over an interval [a, b]. We will explain this

now in detail and then discuss some examples.

x

y

∆ x
x x x1 2 3x0 =a x 4 =b

f(x)

Figure 6.10: Cross-section (along the rotational axis) of the volume of revolution

of f between x = a and x = b. The ‘rectangles’ indicate the cross-sections of the

discs from approximating the volume of revolution with four discs of equal thickness

∆x = (b − a)/4.



158 6. Further Integration

Suppose we have a continuous function f(x) whose graph lies above the x-axis in

the range x ∈ [a, b], that is, f(x) ≥ 0 for x ∈ [a, b]. Then rotating this part of the

graph by 360 degrees, or equivalently 2π radians, about the x-axis will produce

a volume/solid body as illustrated in Figure 6.10, where we see a cross-section

through the volume/solid body along the axis of revolution. Such a volume/solid

body is called the volume of revolution of f between x = a and x = b.

In order to calculate the volume of revolution, we subdivide [a, b] into n subin-

tervals of equal length, that is, into the n subintervals [xk−1, xk], k = 1, 2, . . . , n, of

equal length ∆x = (b − a)/n, where

xk = a + k
b − a

n
= a + k ∆x, k = 0, 1, 2, . . . , n − 1, n.

The volume Vk over the interval [xk−1, xk] is for small ∆x approximately the disk

with radius f(xk−1) and thickness ∆x (see Figure 6.10). To help imagining this,

we may think of slicing the volume of revolution vertically/perpendicular to the

x-axis into n slices of equal thickness ∆x. Each slice is then approximately the disk

with radius f(xk−1) and thickness ∆x. Each such disk has the volume

Vk = area of circular face of disk × thickness of disk = π [f(xk−1)]
2 × ∆x.

Thus an approximation of the total volume V of revolution is obtained by

summing up the volumes π [f(xk−1)]
2 × ∆x of all these disks, that is,

V ≈
n∑

k=1

Vk =
n∑

k=1

π [f(xk−1)]
2 × ∆x =

n∑

k=1

π
[
f(xk−1)

]2
∆x. (6.6)

If we increase the number n of subintervals, then the length of the subintervals

∆x = (b − a)/n shrinks, and the approximation of the volume of revolution gets

better. In the limit n → ∞, and thus ∆x → 0, we recover the actual volume

of revolution and obtain mathematically the integral:

(
volume of revolution of f

between x = a and x = b

)
= V =

∫ b

a

π
[
f(x)

]2
dx = π

∫ b

a

[
f(x)

]2
dx. (6.7)

We could also have obtained (6.7) with the following argumentation: After slicing

the volume of revolution into slices of equal thickness ∆x, we consider an arbitrary

slice from x to x+∆x. This slice can be approximated by the disk with radius f(x)

and thickness ∆x. Thus the volume of the slice is approximately

volume of disk from x to x + ∆x ≈ π
[
f(x)

]2 × ∆x = π
[
f(x)

]2
∆x
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Now we sum up the volumes of all these disks which we will indicate with the

symbolic notation ∑
π
[
f(x)

]2
∆x. (6.8)

The sum (6.8) of the volumes of all these disks gives us an approximation of the

volume of revolution. For the limit ∆x → 0, the summation sign
∑

is replaced by

the integral from x = a to x = b, and ∆x is replaced by dx, and we obtain

(
volume of revolution of f

between x = a and x = b

)
= V =

∫ b

a

π
[
f(x)

]2
dx = π

∫ b

a

[
f(x)

]2
dx.

We discuss some examples.

Example 6.13 (cone as volume of revolution)

Find the volume of a (circular) cone of height h whose base has radius r.

Solution:

h

y

x

r

Figure 6.11: The cone generated by rotation of f(x) = (r/h) x for x ∈ [0, h] about

the x-axis.

To find the volume of a cone of height h, we notice that such a cone can be generated

by rotating the segment of the graph of f(x) = mx between x = 0 and x = h about

the x-axis where m has to be chosen such that the cone has the desired base (see
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Figure 6.11). Since the base of the cone should have radius r, we need to choose m

such that

r = f(h) = mh ⇒ m =
r

h
.

Thus the function f(x) is given by

f(x) =
r

h
x.

From (6.7) the volume of the cone is given by

V = π

∫ h

0

[
f(x)

]2
dx = π

∫ h

0

( r

h
x
)2

dx =
π r2

h2

∫ h

0

x2 dx

=
π r2

h2

x3

3

∣∣∣∣
h

0

=
π r2

h2

h3

3
=

π r2 h

3
.

Thus the cone has the volume V = (π r2 h)/3. 2

Example 6.14 (sphere as body of revolution)

Find the volume of the sphere with radius r > 0.

Solution:

r

x = r cos(

φ)

φ

r

r x

y

φ)

y =
 r sin(

Figure 6.12: The sphere as a volume of revolution by rotating y(x) =
√

r2 − x2 for

x ∈ [−r, r] about the x-axis.

Consider Figure 6.12, where we show a cross section of the sphere through its center.

Any point (x, y) on the boundary of this cross section has coordinates

x = r cos(φ), y = r sin(φ), where φ ∈ [0, 2π].
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From
[
sin(φ)

]2
+
[
cos(φ)

]2
= 1, we find that for any point on the boundary

x2 + y2 =
[
r sin(φ)

]2
+
[
r cos(φ)

]2
= r2

([
sin(φ)

]2
+
[
cos(φ)

]2)
= r2,

and thus

y2 = r2 − x2. (6.9)

If we want to represent the sphere as a volume of revolution, the it is enough to

rotate the upper part of the boundary, for which φ ∈ [0, π], that is, x ∈ [−r, r] and

y ≥ 0, about the x-axis. Thus we obtain from (6.9) the y-coordinates of the upper

hemi-circle in Figure 6.12 as a function y(x) defined by

y(x) =
√

r2 − x2, x ∈ [−r, r].

By rotating y(x) for x ∈ [−r, r] about the x-axis we obtain the sphere of radius r as

a volume of revolution. From (6.7), the volume of the sphere of radius r is given by

V = π

∫ r

−r

[
y(x)

]2
dx = π

∫ r

−r

[√
r2 − x2

]2
dx = π

∫ r

−r

(r2 − x2) dx

= π

(
r2 x − x3

3

)∣∣∣∣
r

−r

= π

[(
r3 − r3

3

)
−
(
−r3 +

r3

3

)]

= π

[
2 r3 − 2

r3

3

]
= 2π r3

[
1 − 1

3

]
= 2π r3 3 − 1

3
=

4π

3
r3.

Thus the volume of the sphere of radius of r is given by V = (4π/3) r3. 2

6.5 Mass of a Rod

In this section we learn how to determine the mass of a rod with constant cross

section and a density that varies only along the length of the rod.

Consider a rod with length L and constant cross-sectional area A as shown in

Figure 6.13 below. Let the x-axis run along the length of the rod with the point

x = 0 at the left end of the rod and the point x = L at the right end of the rod.

We assume that the density of the rod may vary along its length, that is, the

density is a function ρ(x), x ∈ [0, L], that depends only on the position x along the

rod and that is constant for each cross-section.

We want to calculate the mass of the rod.
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x∆

x=0 x=L

A

x x+ ∆ x

(x)ρ

Figure 6.13: Rod with constant cross-section A whose density ρ(x) varies only along

the rod (but is constant for each cross section). To determine the mass of the rod

we consider a thin slice of the rod with cross-section A and thickness ∆x.

For a volume V of constant density, the mass is given by

mass = constant density × volume

The fact that the density is constant on each cross section, gives us the idea to cut

the rod vertically/perpendicular to its length into thin slices of thickness ∆x. For

each such a slice the density is almost constant, and the sum of the masses of all

these thin slices gives an approximation of the mass of the rod.

The slice of the rod between x and x + ∆x has the volume

cross-sectional area × thickness of slice = A ×
[
(x + ∆x) − x

]
= A∆x.

The density of the slice is approximately ρ(x). So the mass of the slice between

x and x + ∆x is approximately

mass of slice ≈ density × volume ≈ ρ(x) × A∆x = Aρ(x) ∆x.

The total mass of the rod is approximately the sum of the masses Aρ(x) ∆x

of all the slices of thickness ∆x into which we may have cut the rod, which we may

write symbolically as

mass of rod ≈
∑

Aρ(x) ∆x.

If we shrink ∆x further and further, that is, for the limit ∆x → 0, the sum becomes

the integral and ∆x becomes dx. Thus the mass of the rod is given by the integral

of Aρ(x) from x = a and x = b.




mass of rod with length L,

constant cross-section A,

and density ρ(x)


 = M =

∫ L

0

Aρ(x) dx = A

∫ L

0

ρ(x) dx. (6.10)

We discuss three examples.
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Example 6.15 (rod with constant cross-section and constant density)

Find the mass of the rod with length L, constant cross-section A, and constant

density ρ(x) = c, x ∈ [0, L].

Solution: From (6.10), the mass is given by

M =

∫ L

0

Aρ(x) dx = A

∫ L

0

c dx = Ac

∫ L

0

1 dx = Ac x|L0 = Ac L.

This is what we expect for the constant density ρ(x) = c, since in this case

M = volume × density =
(
A×L

)
×c = AL c. 2

Example 6.16 (rod with constant cross-section and varying density)

Find the mass of the rod with length L, constant cross-section A, and density

ρ(x) = ex, x ∈ [0, L].

Solution: From (6.10), the mass is given by

M =

∫ L

0

Aρ(x) dx = A

∫ L

0

ex dx = Aex
∣∣L
0

= A
[
eL−e0

]
= A

[
eL−1

]
. 2

Example 6.17 (rod with constant cross-section and varying density)

Find the mass of the rod with length L, constant cross-section A, and density

ρ(x) =
c

L2 + x2
, 0 ≤ x ≤ L.

Solution: From (6.10), the mass of the rod is given by

M =

∫ L

0

Aρ(x) dx = A

∫ L

0

c

L2 + x2
dx.

To find the mass M , we make the substitution

x = x(y) = L tan(y) ⇔ y = y(x) = arctan(x/L).

Since x ∈ [0, L] and we find that y ∈ [0, π/4], and, in particular, the new boundaries

of the integral are

y(0) = arctan(0) = 0 and y(L) = arctan(L/L) = arctan(1) = π/4.

Furthermore, we have

dx

dy
=

d

dy

[
L tan(y)

]
=

L
[
cos(y)

]2 ⇒ dx =
L

[
cos(y)

]2 dy,
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and the denominator simplifies through the substitution x = L tan(y) to

L2 + x2 = L2 + L2
[
tan(y)

]2
= L2

(
1 +

[
sin(y)

]2
[
cos(y)

]2

)

= L2

[
cos(y)

]2
+
[
sin(y)

]2
[
cos(y)

]2 =
L2

[
cos(y)

]2 ,

where we have used
[
cos(y)

]2
+
[
sin(y)

]2
= 1. Thus we find with the substitution

x = L tan(y)

M = A

∫ L

0

c

L2 + x2
dx = A

∫ π/4

0

c
[
cos(y)

]2

L2

L
[
cos(y)

]2 dy

=
Ac

L

∫ π/4

0

1 dy =
Ac

L
y|π/4

0 =
Ac

L

π

4
=

π A c

4 L
.

Thus the mass of the rod is given by M = (π A c)/(4 L). 2

6.6 Centre of Mass

In this section we discuss how to determine the x-coordinate of the centre of

mass of a body (along the x-axis) for which the length L, the cross-sectional area

A(x), and the density ρ(x) are given.

To introduce the concept of the centre of mass we start with the most simple case,

namely, a collection of particles that are located on the x-axis: Let n particles with

masses m1, m2, . . . , mn be placed at positions x1, x2, . . . , xn along the x-axis, then

their centre of mass is defined to be at the position xc given by

centre of mass = xc =

n∑

k=1

mk xk

n∑

j=1

mj

=
n∑

k=1

mk(∑n
j=1 mj

) xk. (6.11)

We observe that the denominator just contains the sum of the masses of all particles,

whereas in the numerator the masses are multiplied by their x-coordinates before

the sum is taken. In the right-most representation of the centre of mass in (6.11),

we can interpret mk/
(∑n

j=1 mj

)
as a ‘weighting factor’ for the coordinate xk. Thus
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the x-coordinate xk of a particle with a large mass mk carries ‘more weight’ for

determining the centre of mass than the x-coordinate of a particle with a small

mass. This is just as we expect.

Now we want to extend this idea to a continuous body arranged along the x-axis,

with length L, cross-sectional area A(x), x ∈ [0, L], and density ρ(x), x ∈ [0, L].

See Figure 6.14 for illustration, and note that we do not assume that the body has

constant cross-sectional area, but the cross-sectional area A(x) is allowed to

vary with x. However, we still assume that the density ρ(x) depends only on the

x-coordinate.

A(x)

0 Lx+

x

x

∆

∆x

(x)ρ

Figure 6.14: A body of length L aligned along the x-axis with cross-sectional area

A(x) and density ρ(x).

Since the density depends only on x, we can get an approximation of the mass

of the body by slicing the body perpendicular to the x-axis into n thin slices of

thickness ∆x = L/n and summing up the masses of all these slices. For the

slice between the x-coordinates x and x+∆x (see Figure 6.14), the volume of the

slice is approximately

cross-sectional area at x × thickness of slice = A(x)×
[
(x+∆x)−x

]
= A(x) ∆x.

Since the density of the slice is approximately ρ(x), the mass of the slice is

approximately

mass of slice ≈ density × volume ≈ ρ(x) × A(x) ∆x = A(x) ρ(x) ∆x. (6.12)

Now we sum up the masses (6.12) of all the n slices into which we have cut the solid

body, and we obtain, with ∆x = L/n

mass of solid body = M ≈
n∑

k=1

A
(
(k − 1) ∆x

)
ρ
(
(k − 1) ∆x

)
∆x
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=
n∑

k=1

A

(
(k − 1)

L

n

)
ρ

(
(k − 1)

L

n

)
L

n
.

Less formal and symbolically we could just write

M ≈
∑

A(x) ρ(x) ∆x. (6.13)

If we shrink the width of the slices, that is, take the limit ∆x → 0, then we obtain

the exact mass of the solid body, and in (6.13) the sum is replaced by the integral

over [0, L] and ∆x is replaced by dx. Thus the mass of the solid body with

length L, cross-sectional area A(x), and density ρ(x) is given by

(
mass of solid body with length L,

cross-section A(x), and density ρ(x)

)
= M =

∫ L

0

A(x) ρ(x) dx. (6.14)

Coming back to (6.12), we see that the contribution of one slice to the numer-

ator in (6.11) is approximately

mass of the slice × x-coordinate =
(
A(x) ρ(x) ∆x

)
×x = A(x) ρ(x) x ∆x. (6.15)

Thus the numerator in (6.11) is approximately the sum of the quantities (6.15)

for all slices, that is,

numerator in (6.11) ≈
n∑

k=1

A
(
(k − 1) ∆x

)
ρ
(
(k − 1) ∆x

) (
(k − 1) ∆x

)
∆x

=
n∑

k=1

A

(
(k − 1)

L

n

)
ρ

(
(k − 1)

L

n

) (
(k − 1)

L

n

)
L

n
,

or in the laxer symbolic notation

numerator in (6.11) ≈
∑

A(x) ρ(x) x ∆x. (6.16)

Taking as before the limit ∆x → 0 yields that in (6.16) the sum is replaced by the

integral and ∆x by dx, and thus we obtain

∫ L

0

A(x) ρ(x) x dx. (6.17)

From (6.14) and (6.17), we obtain that the x-coordinate of the centre of mass

of the solid body is given by
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x-coordinate of centre of mass

of a body with length L, cross-

section A(x), and density ρ(x)


 = xc =

∫ L

0

A(x) ρ(x) x dx
∫ L

0

A(x) ρ(x) dx

. (6.18)

Example 6.18 (x-coordinate of the centre of mass of a cylinder)

Determine the x-coordinate of the centre of mass of a cylinder of radius r and

length L (see Figure 6.15), whose density ρ(x) varies only along the length x ∈ [0, L]

of the cylinder and is given by

ρ(x) = 1 + x2, x ∈ [0, L].

Solution:

r

y

x

ρ(x)

x=0 x=L

Figure 6.15: The cylinder generated by rotation of the constant function f(x) = r

for x ∈ [0, L] about the x-axis.

The cross-sectional area of the cylinder is given by

A(x) = π r2

and thus the mass of the cylinder is given by

M =

∫ L

0

A(x) ρ(x) dx =

∫ L

0

π r2
(
1 + x2

)
dx = π r2

∫ L

0

(
1 + x2

)
dx

= π r2

[
x +

x3

3

]∣∣∣∣
L

0

= π r2

([
L +

L3

3

]
−
[
0 +

03

3

])
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= π r2 L

[
1 +

L2

3

]
=

π r2 L

3

[
3 + L2

]
. (6.19)

Furthermore, the numerator of (6.18) becomes
∫ L

0

A(x) ρ(x) x dx =

∫ L

0

π r2
(
1 + x2

)
x dx = π r2

∫ L

0

(
x + x3

)
dx

= π r2

[
x2

2
+

x4

4

]∣∣∣∣
L

0

= π r2

([
L2

2
+

L4

4

]
−
[
02

2
+

04

4

])

= π r2 L2

2

[
1 +

L2

2

]
=

π r2 L2

4

[
2 + L2

]
. (6.20)

Thus from (6.18) and (6.19) and (6.20), the x-coordinate of the centre of mass is

given by

xc =

∫ L

0

A(x) ρ(x) x dx

∫ L

0

A(x) ρ(x) dx

=
π r2 L2 [2 + L2]/4

π r2 L [3 + L2]/3
=

3 L

4

[2 + L2]

[3 + L2]
. 2

Example 6.19 (x-coordinate of centre of mass of cone with const. density)
Find the position of the centre of mass of a solid cone with base radius r, height h

and constant density ρ(x) = c, x ∈ [0, h].

Solution:

h

y

x

r

Figure 6.16: The cone generated by rotation of f(x) = (r/h) x for x ∈ [0, h] about

the x-axis.
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The solid cone with base radius r, height h can be generated as a volume of revolution

by rotating the segment of the graph of

f(x) =
r

h
x

between x = 0 and x = h about the x-axis. See Figure 6.16 and Example 6.13 for

details. Thus the cross-sectional area is given by

A(x) = π
[
f(x)

]2
= π

( r

h
x
)2

= π
r2

h2
x2.

Thus we find that the mass of the cone is

M =

∫ h

0

A(x) ρ(x) dx =

∫ h

0

π
r2

h2
x2 c dx =

c π r2

h2

∫ h

0

x2 dx

=
c π r2

h2

x3

3

∣∣∣∣
h

0

=
c π r2

h2

(
h3

3
− 0

)
=

c π r2 h

3
,

and

∫ h

0

A(x) ρ(x) x dx =

∫ h

0

π
r2

h2
x2 c x dx =

c π r2

h2

∫ h

0

x3 dx

=
c π r2

h2

x4

4

∣∣∣∣
h

0

=
c π r2

h2

(
h4

4
− 0

)
=

c π r2 h2

4
.

So the centre of mass is at

xc =

∫ L

0

A(x) ρ(x) x dx

∫ L

0

A(x) ρ(x) dx

=
c π r2 h2/4

c π r2 h/3
=

h/4

1/3
=

3 h

4
.

So the centre of mass of the cone is 3/4 of the way down from the apex to the base

of the cone, that is, 1/4 of the way up from the base to the apex of the cone. 2

6.7 Moments of Inertia

In this section we discuss moments of inertia. Intuitively the moment of inertia of

a body is the ‘resistance’ that the body offers (and which we have to overcome)

to being set to rotate about a given axis. The moment of inertia of a body
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depends on the location of the axis of rotation and on the distribution of the mass

over the body and its perpendicular distance to the axis of rotation.

For example, suppose we have two flywheels A and B of identical size and mass, but

wheel A has most of its mass near its rim while wheel B has most of its mass near

its centre. It is observed experimentally that a higher force is required to rotate

wheel A at constant angular speed than to rotate wheel B at the same angular

speed. This is a consequence of wheel A having a higher moment of inertia than

wheel B.

If n particles with masses m1, m2, . . . , mn are at perpendicular distances r1, r2, . . . , rn

from an axis of rotation, then their moment of inertia about that axis is defined

to be

moment of inertia = I =
n∑

k=1

mk r2
k. (6.21)

We may think of the moment of inertia as the ‘resistance’ of the arrangement

of the n masses against being made to rotate about the axis of rotation.

In reality, mass is usually distributed over an extended body and we want

to determine the moment of inertia of such a body about any axis of

rotation inside or outside the body. To derive a formula for the moment of

inertia of an extended body about a given axis of rotation, we start with a standard

example, namely a thin rectangular bar rotating about an axis located at one of its

endpoints.

axis of 
rotation

xx=Lx=0

A

∆

ρ(x)

x x+∆

x

x

Figure 6.17: A thin rectangular bar of length L and constant cross-section A, whose

density ρ(x) varies only along the bar. To determine the moment of inertia of the

bar about the axis through the left end of the bar, we slice the bar into thin slices

of thickness ∆x and sum up the moments of inertia of the thin slices.
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Consider a thin rectangular bar of length L with constant cross-section A,

and assume that the cross-section A is small compared to the length L of the bar.

We lay our x-axis along the length of the bar such that the left end the bar is at

x = 0 and the right end of the bar is at x = L. We assume that the density of

the bar varies only along the bar, that is, the density is a function ρ(x). See

Figure 6.17 for illustration.

Now we want to determine the moment of inertia of the bar about the vertical

axis located at its left end, that is, about the vertical axis through x = 0 (see

Figure 6.17). Since the cross-section A is constant and small compared to the length

of the bar and since the density ρ(x) depends only on x, we may approximate the

moment of inertia as follows: We slice the rectangular bar perpendicular to its length

into n thin slices of thickness ∆x = L/n (with n large), and sum up the moments

of inertia for all the individual slices (see Figure 6.17).

Such a slice, going from x-coordinates x to x + ∆x, has cross-sectional area A, and

approximately the density ρ(x). Thus its mass is approximately

mass of slice ≈ volume × density ≈ A
[
(x + ∆x) − x

]
× ρ(x) = Aρ(x) ∆x.

Therefore the moment of inertia of such a slice is approximately

mass of slice ×
(

perpendicular distance

from axis of rotation

)2

≈
[
Aρ(x) ∆x

]
× x2 = Aρ(x) x2 ∆x.

To get an approximation of the moment of inertia of the rectangular bar about the

vertical rotational axis through x = 0, we can sum up the moments of inertia

of the slices. In the symbolic notation we have

(
moment of inertia of the bar of length L

about the vertical axis through x = 0

)
= I ≈

∑
Aρ(x) x2 ∆x.

If we shrink the thickness ∆x of the slices then the approximation improves, and,

for the limit ∆x → 0, the sum becomes the integral and ∆x is replaced by dx. Thus

the moment of inertia of the rectangular bar about the vertical axis through

x = 0 is given by




moment of inertia of bar

of length L about vertical

axis through x = 0


 = I =

∫ L

0

Aρ(x) x2 dx = A

∫ L

0

ρ(x) x2 dx. (6.22)

If we change the location of the axis of rotation from x = 0 to the point x = a (that

is, we shift the axis of rotation horizontally by a), then the factor x2 in (6.22) needs
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to be replaced by (x − a)2, since x − a is now the perpendicular distance from the

axis of rotation. Thus the moment or inertia of the rectangular bar about the

vertical axis through x = a is given by




moment of inertia of bar

of length L about vertical

axis through x = a


 = I =

∫ L

0

Aρ(x) (x − a)2 dx. (6.23)

Example 6.20 (moment of inertia of rectangular bar)

Find the moment of inertia of a thin rectangular bar of length L, constant cross-

sectional area A and constant density ρ(x) = c, for rotation about the vertical axis

through (a) an end point of the bar and (b) the middle of the bar.

Solution: The moment of inertia is given by (6.23) with ρ(x) = c and (a) a = 0

and (b) a = L/2. Thus we find that the moment of inertia about the vertical axis

through an endpoint is

I =

∫ L

0

Ac x2 dx = Ac

∫ L

0

x2 dx = Ac
x3

3

∣∣∣∣
L

0

=
1

3
Ac L3,

and the moment of inertia about the vertical axis through the middle of the bar is

I =

∫ L

0

Ac

(
x − L

2

)2

dx = Ac

∫ L

0

(
x − L

2

)2

dx = Ac
1

3

(
x − L

2

)3
∣∣∣∣∣

L

0

= Ac
1

3

[(
L

2

)3

−
(
− L

2

)3
]

= Ac
1

3

[
L3

8
+

L3

8

]
= Ac

2

3

L3

8
=

1

12
Ac L3.

We note that the moment of inertia about a vertical rotational axis through the

middle of the bar is only one quarter of the moment of inertia about the vertical

rotational axis through one endpoint of the bar. 2

The second application that we discuss is how to compute the the moment of

inertia of hollow and solid cylinders for rotation about their axis of sym-

metry.

Consider a very thin hollow cylinder (a tube) with radius R and mass M which

is uniformly distributed over the hollow cylinder. We want to compute the moment

of inertia about the axis of circular symmetry as rotational axis. Since the thin

hollow cylinder has all its mass at distance R from its axis of circular symmetry, we

may calculate the moment of inertia by slicing the hollow cylinder vertically into

n thin stripes each of equal volume and equal mass ∆m = M/n (see Figure 6.18).
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Each of these stripes has perpendicular distance R to the axis of circular symmetry.

Thus the moment of inertia of the hollow cylinder about its axis of circular

symmetry is given by




moment of interia of the

hollow cylinder about its

axis of circular symmetry


 = I =

n∑

k=1

∆mR2 = R2

n∑

k=1

∆m = R2 M. (6.24)

axis of rotation

R

Figure 6.18: Thin hollow cylinder with radius R and mass M . To determine the

moment of inertia about the axis of circular symmetry, we cut the cylinder vertically

into n stripes of equal volume and mass and sum up their moments of inertia.

Now we consider a solid cylinder with length L, radius R, and constant density

ρ(x) = c. The cylindrical shell with thickness ∆x at a distance x from its axis of

symmetry (see Figure 6.19) has the volume

volume of cylindrical shell = π (x + ∆x)2 L − π x2 L

= π
[
x2 + 2 x ∆x + (∆x)2

]
L − πx2L

= π
[
2 x ∆x + (∆x)2

]
L

≈ 2 π L x ∆x.

In the last step we used the fact that for very small ∆x, the term (∆x)2 is much
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smaller than 2 x ∆x and can thus be neglected. Hence the mass of the shell is

mass of shell ≈ volume × density ≈ 2 π L x ∆x × ρ(x) = 2 π c L x ∆x,

where we have used ρ(x) = c.

axis of rotation

R∆x

L

R

x x∆

horizontal cross−section of cylinder 

Figure 6.19: A cylindrical shell of the solid cylinder with radius R on the left. In

the right picture, we see a horizontal cross-section through the cylinder.

Then the moment of inertia of the cylinder about its axis of circular symmetry

is approximately the sum of the moments of inertia of all the individual thin shells,

that is, the sum of

moment of inertia of the shell = (2 π c L x ∆x
)
× x2 = 2 π c L x3 ∆x

taken as x changes from x = 0 to x = r − ∆x in jumps of length ∆x = R/n with n

large. In the laxer symbolic notation, the approximation of the moment of inertia

of the cylinder about its axis of circular symmetry is given by

∑
2 π c L x3 ∆x.
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In the limit as the thickness ∆x goes to zero, we recover the actual moment of

inertia of the cylinder. The sum goes over into the integral and ∆x is replaced by

dx. Thus the moment of inertia of the solid cylinder with radius R, height L,

and constant density ρ(x) = c about its axis of circular symmetry is given by




moment of inertia of solid

cylinder about its axis of

circular symmetry


 =

∫ R

0

2 π c L x3 dx = 2 π c L

∫ R

0

x3 dx. (6.25)

We work out the integral in (6.25), and find

2 π c L

∫ R

0

x3 dx = 2 π c L
x4

4

∣∣∣∣
R

0

= 2 π c L
R4

4
=

π c L R4

2
. (6.26)

The cross-sectional area of the cylinder is A = π R2, and so the total mass of the

cylinder is given by

M =

∫ L

0

Aρ(y) dy =

∫ L

0

(
π R2

)
c dy = π R2 c

∫ L

0

dy = π R2 c y|L0 = π c L R2.

Thus we find from (6.25) and (6.26) that




moment of inertia of solid

cylinder about its axis of

circular symmetry



 =
c π L R4

2
=

1

2
M R2. (6.27)

Comparing the moment of inertia of a solid cylinder with radius R, mass M , and

constant density ρ(x) = c, about its axis of symmetry with the moment of inertia

of a hollow cylinder of the same mass and same radius about its axis of symmetry,

we find that the moment of inertia of the solid cylinder is half that of the

hollow cylinder with the same radius and mass.
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Chapter 7

Series Expansions and

Approximations

In this chapter we discuss (finite) sums and (infinite) series. An infinite series

is essentially an infinite sum, and we will have to inspect the series to see whether it

converges, that is, has a finite value. Among the infinite series, we will discuss both

series of real numbers but also so-called power series, and we will learn how

to expand a function into a power series about a given point. The first few

terms of such an expansion provide often a good approximation of the function

close to the point of expansion.

In Section 7.1, we will introduce finite sums, and we will discuss arithmetic pro-

gression and geometric progression. In Section 7.2, we will discuss the binomial

formula and two ways to determine the coefficients obtained when multiplying the

factors in (a + b)n and writing (a + b)n as a sum: Pascal’s triangle which you

may know from school, and the representation of (a + b)n as a sum with the help of

the so-called binomial coefficients which can be computed directly (rather than

recursively as done with Pascal’s triangle).

In Section 7.3, we introduce infinite series of real numbers

∞∑

k=m

ak = am + am+1 + . . . + ak + . . . = lim
n→∞

n∑

k=m

ak

︸ ︷︷ ︸
= Sn

. (7.1)

As the representation on the right in (7.1) implies you should really think of an

177
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infinite series as the limit of the sequence {Sn} of partial sums

Sn =
n∑

k=m

ak.

The infinite series converges if the sequence {Sn} converges, and the infinite

series does not converge – we say it diverges – if the sequence {Sn} does not

converge. What does it intuitively mean if the series (7.1) converges? If the series

(7.1) converges and S = limn→∞ Sn, then, roughly, the larger n the closer Sn gets to

the value S of the series. Thus for large n, the finite partial sum Sn will be a good

approximation of the value S of the series.

In Section 7.4, we introduce so-called power series

∞∑

k=0

ak (x − x0)
k = a0 + a1 (x − x0) + a2 (x − x0)

2 + . . . + ak (x − x0)
k + . . . , (7.2)

where here x0 and a0, a1, a2, . . . are constants. The expression (7.2) is called a power

series because we sum up powers of (x − x0) (multiplied with some constants).

For each fixed x we have just an infinite sum of the real numbers ak (x − x0)
k for

k = 0, 1, 2, 3, . . . . However, you should think of the power series (7.2) as a function

of the variable x. The partial sums of the power series are

Sn(x) =
n∑

k=0

ak (x − x0)
k,

and we see that the n-th partial Sn(x) sum is just a polynomial of degree n. The

value of the power series at a fixed x is given by taking the limit of the sequence of

partial sums {Sn(x)} at x, that is,

∞∑

k=0

ak (x − x0)
k = lim

n→∞
Sn(x) = lim

n→∞

n∑

k=0

ak (x − x0)
k. (7.3)

If we think in (7.3) of x as a variable we see that, for those x at which the power

series converges, the function given by the power series is approximated by the

sequence {Sn} of polynomials Sn.

Very important examples of power series are the so-called Taylor series of a func-

tion about x0 and, as a special case, the Maclaurin series which is the Taylor

series about x0 = 0. As the notion ‘Taylor series of a function about x0’ implies

a Taylor series is computed for a given function and its partial sums, the Taylor
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polynomials, will provide approximations of the function. The simplest case of a

Taylor series is the Maclaurin series of a smooth function f , which is given by

T (f, 0)(x) =
∞∑

k=0

f (k)(0)

k!
xk = f(0) + f ′(0)x +

f ′′(0)

2
x2 +

f ′′′(0)

6
x3 + . . . . (7.4)

We see that the coefficients of the powers of x involve the values of f and its

derivatives at x0 = 0, and for x = x0 = 0 the series has the value f(0). In Section 7.6,

we will learn that the Taylor polynomials of a function f about x0 (that is, the

partial sums of the Taylor/Maclaurin series) provide an approximation of f(x) for

x close to x0. For the Maclaurin series (7.4), the Taylor polynomial of degree n is

given by

Sn(f, 0)(x) =
n∑

k=0

f (k)(0)

k!
xk = f(0) + f ′(0)x +

f ′′(0)

2
x2 + . . . +

f (n)(0)

n!
xn. (7.5)

In engineering and physics, the approximation of a function f by a Taylor

polynomial of low degree is a very useful and common tool. Low degree means

here often degree zero, one, two, or three, that is, we approximate f(x) close to x0 by

a constant, a linear function, a quadratic function, or a cubic function, respectively.

We will learn a ‘rule of thumb’ for estimating the error of the approximation of

f(x) by its Taylor polynomial of degree n.

In Section 7.7 we learn that we can differentiate a power series term by term

and integrate a power series term by term, that is, we may move the differen-

tiation and the integral, respectively, behind the summation sign.

7.1 Finite Sums, and Arithmetic and Geometric

Progressions

Before we discuss two particular types of finite sums (or finite series), namely

arithmetic progression and geometric progression, we will briefly introduce

sums and the notation with the summation sign (even though we have used the

summation sign already occasionally in the last chapters).
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Definition 7.1 (finite sum (or finite series))

Let m and n be integers, and let m ≤ n. The finite sum (or finite series)

n∑

k=m

ak

is defined by

n∑

k=m

ak = am + am+1 + . . . + ak + . . . + an−1 + an, (7.6)

where the ak, for k = m, m + 1, . . . , n − 1, n, are real numbers. Usually but not

always we will have that m ≥ 0. The symbol
∑

is called the summation sign.

The index k in (7.6) is a ‘placeholder’ for the values m, m+1, . . . , n−1, n. The

summation index could be given any other name, for example j, and we have

n∑

k=m

ak =
n∑

j=m

aj .

We give some examples of finite sums/finite series.

Example 7.2 (finite sums/finite series)

Compute the following finite sums/finite series:

(a)
6∑

k=1

k, (b)
5∑

j=3

j2, (c)
4∑

r=2

c, where c ∈ R is a constant.

Solution: We work out the sums in (a) and (b) and find

(a)
6∑

k=1

k = 1 + 2 + 3 + 4 + 5 + 6 = 21,

and

(b)
5∑

j=3

j2 = 32 + 42 + 52 = 9 + 16 + 25 = 50.

The third sum is a ‘bit peculiar’ in that we sum up the constant c which does not

actually depend on r. This means that for each value of the index r we add the

constant c, that is,

4∑

r=2

c = c
↑

r=2

+ c
↑

r=3

+ c
↑

r=4

= 3 c. 2
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From generalizing Example 7.2 (c), we find that for m ≤ n and any constant c ∈ R

n∑

k=m

c = (n − m + 1) c. (7.7)

Lemma 7.3 (properties of sums)

n∑

k=m

(
ak + bk

)
=

n∑

k=m

ak +
n∑

k=m

bk, (7.8)

and for any constant c ∈ R

n∑

k=m

(
c ak

)
= c

n∑

k=m

ak. (7.9)

In the next example, we will compute a well-known sum in which the summation

index k goes up to an arbitrary integer n.

Example 7.4 (value of
∑n

k=1 k)

Let n > 0 be an arbitrary integer. Compute the sum

Sn =
n∑

k=1

k,

Solution: To find Sn =
∑n

k=1 k, we write the sum Sn explicitly as

Sn = 1 + 2 + 3 + . . . + (n − 1) + n, (7.10)

and we rewrite the sum Sn also backwards

Sn = n + (n − 1) + (n − 2) + . . . + 2 + 1. (7.11)

Then we add (7.10) and (7.11) such that we add the first terms in both sums

together, add the second terms in both sums together, and so on

2 Sn =
(
1 + n

)
+
(
2 + (n − 1)

)
+
(
3 + (n − 2)

)
+ . . . +

(
(n − 1) + 2

)
+
(
n + 1

)

= (n + 1) + (n + 1) + (n + 1) + . . . + (n + 1) + (n + 1)︸ ︷︷ ︸
n of these

= n (n + 1).

Dividing by 2, yields finally
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Sn =
n∑

k=1

k =
1

2
n (n + 1). (7.12)

We will need (7.12) when we work out a formula for the arithmetic progression

below. 2

We call the expression on the right-hand side of (7.12) a closed representation

or closed formula for the sum on the left-hand side. The term ‘closed’ means

here that the new representation does not contain any summation but is just one

expression.

Now we will discuss arithmetic progression and geometric progression.

Definition 7.5 (arithmetic progression)

A series of the form

Sn =
n∑

k=0

(
a + k h

)
= a +

(
a + h

)
+
(
a + 2 h

)
+ . . . +

(
a + k h

)
+ . . . +

(
a + nh

)
,

where a ∈ R and h ∈ R with h > 0, is called an arithmetic progression (or

arithmetic sum). We observe that the difference between any two consecutive

terms (where we subtract the term with the larger index from its predecessor) is

(
a + k h

)
−
(
a + (k − 1)h

)
= h.

For this reason h is called the common difference.

Now we want to work out a closed representation for the arithmetic progression.

Using (7.8), (7.9), and (7.7), we find that

Sn =
n∑

k=0

(
a + k h

)
=

n∑

k=0

a +
n∑

k=0

k h =
n∑

k=0

a + h

n∑

k=0

k = (n + 1) a + h

n∑

k=1

k,

where we have used in the last step that we may start the second sum with k = 1,

since for k = 0 the term k is zero. Now we use (7.12) to get a closed representation

of the remaining sum and find

Sn =
n∑

k=0

(
a+k h

)
= (n+1) a+h

n∑

k=1

k = (n+1) a+h
n (n + 1)

2
= (n+1)

[
a +

nh

2

]
.

Thus the closed representation of the arithmetic series is given by
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Sn =
n∑

k=0

(
a + k h

)
= (n + 1)

[
a +

nh

2

]
= (n + 1)

[
a + (a + nh)

2

]
(7.13)

From the right-most representation in (7.13), we see that the term in the angular

brackets is the mean value of the the first term a and the last term a + nh of the

sum. The formula (7.13) contains (7.12) as the special case a = 0 and h = 1.

Example 7.6 (application of arithmetic progression)

Calculate the value of the following finite sum

50∑

k=11

(
10 + 2 k

)
.

Solution: We write the the finite sum as

50∑

k=11

(
10 + 2 k

)
=

50∑

k=0

(
10 + k 2

)
−

10∑

k=0

(
10 + k 2

)
,

and then use the formula (7.13) to evaluate each individual sum (which is an arith-

metic progression with a = 10 and h = 2) on the right-hand side.

50∑

k=0

(
10 + k 2

)
= 51

[
10 +

50 × 2

2

]
= 51 × 60 = 3060,

and

10∑

k=0

(
10 + k 2

)
= 11

[
10 +

10 × 2

2

]
= 11 × 20 = 220.

Thus we find

50∑

k=11

(
10+2 k

)
=

50∑

k=0

(
10+k 2

)
−

10∑

k=0

(
10+k 2

)
= 3060−220 = 2840. 2
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Definition 7.7 (geometric progression)

A series of the form

Sn =
n∑

k=0

a rk = a + a r + a r2 + . . . + a rk + . . . + a rn,

where a ∈ R and r ∈ R, is called a geometric progression (or geometric

sum). We observe that the ratio of any two consecutive terms (where we divide

the term with the larger index by its predecessor) is

a rk

a rk−1
= r.

For this reason r is called the common ratio.

We attempt to find a closed representation of the geometric progression. Multiplying

the geometric progression

Sn =
n∑

k=0

a rk. (7.14)

by r gives that

r Sn = r

n∑

k=0

a rk =
n∑

k=0

a rk+1.

Now we substitute the summation index by j = k + 1, and thus k = j − 1. When

doing this we have also to decide which values j can assume. Since we had k =

0, 1, 2, . . . , n, we have that j = k + 1 assumes the values j = 1, 2, 3, . . . , n + 1. Thus

r Sn =
n∑

k=0

a rk+1 =
n+1∑

j=1

a rj .

Renaming j to k gives that

r Sn =
n+1∑

k=1

a rk. (7.15)

Subtracting r Sn from Sn yields therefore, using (7.14) and (7.15),

Sn− r Sn =
n∑

k=0

a rk −
n+1∑

k=1

a rk = a r0 +
n∑

k=1

a rk −
[

n∑

k=1

a rk + a rn+1

]
= a r0−a rn+1,

where we have used the fact that all terms, except the term for k = 0 in the first

sum and the term for k = n+1 in the second sum, occur in both sums and thus are

cancelled out. Simplifying the left-hand side and the right-hand side further yields

(1 − r) Sn = Sn − r Sn = a r0 − a rn+1 = a
(
1 − rn+1

)
.
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If r 6= 1, then dividing by (1 − r) yields

Sn =
a
(
1 − rn+1

)

1 − r
= a

(
1 − rn+1

)

1 − r
.

If r = 1, then

Sn =
n∑

k=0

a 1k =
n∑

k=0

a = (n + 1) a,

and this case is not of particular interest.

We summarize what we have learned as a lemma.

Lemma 7.8 (closed form of geometric progression)

Let a ∈ R and r ∈ R with r 6= 1. Then the geometric progression (or

geometric sum) has the closed form

Sn =
n∑

k=0

a rk = a
1 − rn+1

1 − r
. (7.16)

You should know the closed formula (7.16) of the geometric progression from mem-

ory! The closed formula (7.16) of the geometric progression is useful in many con-

texts and we will apply it later in this chapter.

Example 7.9 (application of geometric progression)

Compute the value of the following finite sums:

(a)
3∑

k=0

2k, (b)
5∑

k=0

(
− 1

2

)k

, (c)
4∑

k=0

9 × 10−k.

Solution: The finite sum in (a) is a geometric progression with a = 1, r = 2, and

n = 3. Thus, from (7.16)

3∑

k=0

2k =
1 − 24

1 − 2
=

1 − 16

−1
= 15.

The finite sum in (b) is a geometric progression with a = 1 and r = −1/2 and n = 5.

From (7.16) we have

5∑

k=0

(
−1

2

)k

=
1 − (−1/2)6

1 − (−1/2)
=

1 − (1/2)6

3/2
=

1 − 1/64

3/2
=

63

64

2

3
=

21

32
.
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Writing the finite sum in (c) as

4∑

k=0

9 × 10−k =
4∑

k=0

9 ×
(

1

10

)k

,

we see that it is also a geometric progression with a = 9, r = 1/10 = 10−1 and

n = 4. Thus from (7.16)

4∑

k=0

9×10−k = 9
1 − (10−1)5

1 − 10−1
= 9

1 − 10−5

9/10
= 10

(
1−10−5

)
= 10×0.99999 = 9.9999.

We see how useful the closed formula (7.16) of the geometric progression is. 2

7.2 Binomial Expansions

In this section we discuss binomial expansions.

We are familiar with the first binomial formula

(
a + b

)2
= a2 + 2 a b + b2, (7.17)

and the second binomial formula

(
a − b

)2
= a2 − 2 a b + b2. (7.18)

We want to derive an analogous formula for the case (a + b)n and (a− b)n, where n

can be an arbitrary non-negative integer. Before we do this, we observe that (7.18)

follows immediately from (7.17) by

(
a − b

)2
=
(
a + (−b)

)2
= a2 + 2 a (−b) + (−b)2 = a2 − 2 a b + b2.

Therefore, we will restrict our discussion to deriving expansions for (a + b)n.

We start with working out (a + b)3 by hand

(
a + b

)3
= (a + b)

(
a + b

)2
= (a + b)

(
a2 + 2 a b + b2

)
= a3 + 3 a2 b + 3 a b2 + b3.

If we work out (a + b)4, then we will find

(a + b)4 = a4 + 4 a3 b + 6 a2 b2 + 4 a b3 + b4.

We observe that (a + b)0 = 1 and (a + b)1 = a + b, and write the expressions for

(a + b)n, with n = 0, 1, 2, 3, 4 in the following form:
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(a + b)0 = 1

ւ ց
(a + b)1 = 1 a + 1 b

ւ ց ւ ց
(a + b)2 = 1 a2 + 2 a b + 1 b2

ւ ց ւ ց ւ ց
(a + b)3 = 1 a3 + 3 a2b + 3 a b2 + 1 b3

ւ ց ւ ց ւ ց ւ ց
(a + b)4 = 1 a4 + 4 a3b + 6 a2b2 + 3 a b3 + 1 b4

(7.19)

We observe that the coefficients, which have each been put into a box, obey the

following pattern: The first and the last coefficient have always the value one. The

other coefficients can be be obtained from the coefficients in the previous line as

follows: If we number the coefficients according to the order in which they appear

in (7.19), then the kth coefficient is the sum of the (k − 1)th and kth coefficient in

the previous line. This pattern continues for (a + b)n with n > 4. The structure

(7.19) is referred to as Pascal’s triangle.

For general n, the expansion of (a + b)n consists of terms of the form

coefficient × an−rbr with r = 0, 1, 2, . . . , n,

which arise from taking b from r of the parentheses (a + b) and taking a from each

of the remaining n− r of the parentheses (a+ b) and then multiplying these factors.

Indeed, we have the binomial formula

(
a + b

)n
=

n∑

r=0

(
n

r

)
an−r br, (7.20)

where the binomial coefficients
(

n
r

)
of an−r br are defined by

(
n

r

)
=

n!

r! (n − r)!
, (7.21)

with the factorials n! and r! defined by

0! = 1, 1! = 1, m! = (m−1)!×m = 1×2×3× . . .× (m−1)×m, m ∈ N.

Note that the binomial coefficients are integers, which is not obvious from their

definition (7.21). The binomial coefficients are exactly the coefficients that occur
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in Pascal’s triangle. More precisely, the binomial coefficient
(

n
r

)
is the (r + 1)th

coefficient in the row for (a + b)n in Pascal’s triangle (7.19).

Example 7.10 (binomial expansion)

Determine an expansion of (1 + x)4 using the formulas (7.20) and (7.21).

Solution: We have to work out the binomial coefficients
(
4
r

)
for r = 0, 1, 2, 3, 4.

(
4

0

)
=

4!

0! (4 − 0)!
=

4!

1 × 4!
= 1,

(
4

1

)
=

4!

1! (4 − 1)!
=

4!

3!
= 4,

(
4

2

)
=

4!

2! (4 − 2)!
=

4!

2! 2!
=

4!

4
= 3! = 6,

(
4

3

)
=

4!

3! (4 − 3)!
=

4!

3! 1!
=

4!

1! (4 − 1)!
=

(
4

1

)
= 4,

(
4

4

)
=

4!

4! (4 − 4)!
=

4!

4! 0!
=

4!

0! (4 − 0)!
=

(
4

0

)
= 1,

and we obtain indeed the numbers from Pascal’s triangle. Thus

(1 + x)4 =
4∑

r=0

(
4

r

)
14−r xr =

4∑

r=0

(
4

r

)
xr = 1 + 4 x + 6 x2 + 4 x3 + x4. 2

The observation from the last example, that
(
4
3

)
=
(

4
4−3

)
=
(
4
1

)
and

(
4
4

)
=
(
4
0

)
, holds

in the following general form:
(

n

r

)
=

n!

r! (n − r)!
=

n!

(n − r)! r!
=

n!

(n − r)! (n − (n − r))!
=

(
n

n − r

)
.

The way by which we generate the (binomial) coefficients in Pascal’s triangle implies

the following formula for the binomial coefficients:
(

n

r

)
+

(
n

r + 1

)
=

(
n + 1

r + 1

)
.

7.3 Infinite Series

In this section we discuss (infinite) series, by which we mean an expression of the

form ∞∑

k=m

ak = am + am+1 + . . . + ak + ak+1 + . . . . (7.22)
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In (7.22) we do not stop summing up at a certain index k = n but go on summing

up ‘until infinity’. The value of an infinite series (7.22) is in fact the limit

∞∑

k=m

ak = lim
n→∞

n∑

k=m

ak = lim
n→∞

Sn of the sequence {Sn}, where Sn =
n∑

k=m

ak.

The finite sums

Sn =
n∑

k=m

ak, where n ≥ m

are called the partial sums of the series, and as we saw above the value of the

series is the limit of the sequence {Sn} of partial sums.

To clarify matters, let us go back to what it means if a sequence {Sn} of real

numbers Sn converges to a real number S, in formulas,

lim
n→∞

Sn = S.

It means roughly that if n is large enough then Sn is very close to the limit

S, and if we increase n then Sn gets closer and closer to the limit. Let us

look at a concrete example.

Example 7.11 (series of real numbers approaches its limit)

The sequence

{Sn} defined by Sn = 1 +
1

n
=

n + 1

n
,

converges to the number S = 1, since

lim
n→∞

Sn = lim
n→∞

(
1 +

1

n

)
= 1 + lim

n→∞

1

n
= 1.

Let us work out Sn for some samples of n, say n = 1, 2, 10, 50, 100, 1000, to see how

the sequence {Sn} approaches the limit S = 1 as n increases. We have

S1 = 1 +
1

1
= 2, S2 = 1 +

1

2
=

3

2
= 1.5, S10 = 1 +

1

10
= 1 + 0.1 = 1.1,

S50 = 1 +
1

50
= 1 + 0.02 = 1.02, S100 = 1 +

1

100
= 1 + 0.01 = 1.01,

S1000 = 1 +
1

1000
= 1 + 0.001 = 1.001,

and we see indeed that Sn approaches the limit S = 1 as n increases. 2
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Sequences of real numbers {Sn} may converge, or not, and if a sequence of {Sn}
of real numbers does not converge, then we say it diverges.

In the Example 7.11 above we have seen a sequence of real numbers that converges.

Now we also give an example of two sequences of real numbers that diverge.

Example 7.12 (sequences of real numbers that diverge)

The sequences

{Sn} with Sn = n and {Tn} with Tn = (−1)n

diverge. Indeed, the members Sn = n of the sequence {Sn} get arbitrarily large

as n → ∞, and thus limn→∞ Sn = limn→∞ n = ∞. If we find that the ‘limit’ is

plus (or minus) infinity, then the sequence diverges! In the other example

the values of Tn = (−1)n alternate or ‘oscillate’ between −1 and 1. Neither of

these values can be the limit: for example 1 cannot be the limit, for if it were the

limit we would have that for n large enough all Tn are close to 1, but some such Tn

are still −1 which is not close to 1. Thus {Tn} does not converge. 2

Now that we have clarified the meaning of convergence for sequences of real numbers,

we come back to infinite series of real numbers in the definition below.

Definition 7.13 (convergence of an infinite series)

Let m be an integer. The infinite series

∞∑

k=m

ak = am + am+1 + . . . + ak + ak+1 + . . . (7.23)

converges if the sequence {Sn} of partial sums

Sn =
n∑

k=m

ak = am + am+1 + . . . + an, where n ≥ m

converges. The infinite series (7.23) diverges (that is, does not converge)

if the sequence {Sn} of partial sums diverges (that is, does not converge). If

the sequence {Sn} of partial sums converges to the value S = limn→∞ Sn, then S

is the value of the series, that is, S =
∑∞

k=m ak.

We discuss an example.
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Example 7.14 (geometric series)

Let a 6= 0. Investigate for which r the geometric series

∞∑

k=0

a rk = a r0 + a r1 + a r2 + . . . + a rk + . . . (7.24)

converges and for which r the series diverges (that is, does not converge).

Solution: First let |r| 6= 1. We consider the sequence Sn of partial sums

Sn =
n∑

k=0

a rk = a
1 − rn+1

1 − r
. (7.25)

where the closed representation on the right follows from Lemma 7.8. (Note that

the partial sums (7.25) are geometric progressions.)

If |r| > 1, then

|rn+1| = |r|n+1 → ∞ as n → ∞ ⇒ lim
n→∞

Sn = lim
n→∞

a
1 − rn+1

1 − r
= ∞.

Thus, for |r| > 1, the sequence {Sn} does not converge, and consequently the infinite

series (7.24) does not converge.

If |r| < 1, then

rn+1 → 0 as n → ∞ ⇒ lim
n→∞

Sn = lim
n→∞

a
1 − rn+1

1 − r
= a

1

1 − r
=

a

1 − r
.

Consequently, if |r| < 1, then the infinite series (7.24) converges and we have

∞∑

k=0

a rk = lim
n→∞

Sn =
a

1 − r
.

If r = 1, then rk = 1k = 1 and we have

Sn =
n∑

k=0

a rk =
n∑

k=0

a 1k =
n∑

k=0

a = (n + 1) a,

and therefore

lim
n→∞

Sn = lim
n→∞

(n + 1) a =

{ ∞ if a > 0,

−∞ if a < 0.

We see that for r = 1 the sequence {Sn} of partial sums diverges, and thus, for

r = 1, the geometric series (7.24) diverges.
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If r = −1, then rk = (−1)k, and (−1)k = 1 if k is even and (−1)k = −1 if k is odd.

Thus we find that

Sn =
n∑

k=0

a rk =
n∑

k=0

a (−1)k = a+(−a)+a+(−a)+ . . .+

{
a if n is even,

a + (−a) if n is odd.

Thus we have for odd n as many terms a as we have terms −a, and they cancel each

other out. For even n we have one more term a, and the remaining terms cancel

each other out. Thus

Sn =
n∑

k=0

a (−1)k =

{
a if n is even,

0 if n is odd.

Since the values of Sn alternate (‘oscillate’) between 0 and a 6= 0, the sequence {Sn}
does not converge, that is, it diverges. Thus the geometric series (7.24) diverges for

r = −1. 2

We summarize what we have learnt about the geometric series in the following

lemma.

Lemma 7.15 (convergence of the geometric series)

Let a 6= 0 and let r ∈ R. The geometric series

∞∑

k=0

a rk = a r0 + a r1 + a r2 + . . . + a rk + . . .

converges for |r| < 1 and diverges for |r| ≥ 1. For |r| < 1, we have

∞∑

k=0

a rn =
a

1 − r
. (7.26)

Example 7.16 (geometric series)

From the formula (7.26) for the geometric series with a = 1 and r = 1/2 (note

|r| = 1/2 < 1), we have

1 +
1

2
+

1

4
+

1

8
+ . . . =

∞∑

k=0

1

2k
=

∞∑

k=0

(
1

2

)k

=
1

1 − 1/2
=

1

1/2
= 2. 2

Example 7.17 (geometric series)

Find the value of the series

1 − 1

2
+

1

4
− 1

8
+ . . . =

∞∑

k=0

(−1)k

2k
.
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Solution: Rewriting the series as

∞∑

k=0

(−1)k

2k
=

∞∑

k=0

(
− 1

2

)k

,

reveals that it is the geometric series with a = 1 and r = −1/2. Since |r| = |−1/2| =

1/2 < 1, we know that the geometric series converges, and from (7.26) its limit is

given by
∞∑

k=0

(−1)k

2k
=

∞∑

k=0

(
− 1

2

)k

=
1

1 − (−1/2)
=

1

3/2
=

2

3
.

To investigate ‘how’ the geometric series with a = 1 and r = −1/2 converges to its

limit 2/3, we evaluate the first four partial sums.

S0 = 1 >
2

3
,

S1 = 1 − 1

2
=

1

2
<

2

3
,

S2 = 1 − 1

2
+

1

4
=

3

4
>

2

3
,

S3 = 1 − 1

2
+

1

4
− 1

8
=

5

8
<

2

3
,

and so the sequence {Sn} of the partial sums converges to the limit 2/3 in an

‘oscillatory’ fashion. 2

Example 7.18 (geometric series)

Investigate the convergence of the series

∞∑

k=0

(−1)k

10
.

Solution: We observe that this is a geometric series with a = 1/10 and r = −1.

Since |r| = | − 1| = 1, we know from Lemma 7.15 that the series diverges. 2

Example 7.19 (series that diverge)

Show that the series

(a)
∞∑

k=1

k and (b)
∞∑

k=1

1

k

diverge.
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Solution: (a) We have that

∞∑

k=1

k = lim
n→∞

n∑

k=1

k = lim
n→∞

n(n + 1)

2
= ∞,

where we have used that the finite sum
∑n

k=1 k is an arithmetic progression.

(b) We group the terms in the series together as indicated below

∞∑

k=1

1

k
= 1 +

1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+

(
1

9
+ . . . +

1

16

)
+ . . . .

Each sum of the terms in one of the brackets is larger than 1/2, and thus

∞∑

k=1

1

k
= lim

n→∞

2n∑

k=1

1

k
≥ lim

n→∞

(
1 + n × 1

2

)
= ∞.

Thus we have shown that both series diverge. 2

7.4 Power Series

Power series are infinite series for which the partial sums are polynomials.

Therefore a power series defines a function. In this section, we will define power

series and look at some examples.

We start the section with a motivating example. From Lemma 7.15, we know that

the geometric series

∞∑

k=0

xk = 1 + x + x2 + x3 + x4 + . . . + xk + . . . (7.27)

converges for |x| < 1 and diverges for |x| ≥ 1. For |x| < 1 we have seen that

∞∑

k=0

xk =
1

1 − x
. (7.28)

If we think in (7.27) and (7.28) of x as a variable, then we have our first example of

a power series. From (7.28) we see that the power series

∞∑

k=0

xk = 1 + x + x2 + x3 + x4 + . . . + xk + . . .
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which we now consider as a function of the variable x, converges for |x| < 1 to

the function 1/(1 − x).

Definition 7.20 (power series about x0)

An infinite series of the form

∞∑

k=0

ak (x− x0)
k = a0 + a1 (x− x0) + a2 (x− x0)

2 + . . . + ak (x− x0)
k + . . . (7.29)

is called a power series about x0. Here x ∈ R is the variable of the power

series. The real numbers a0, a1, a2, a3 . . . , ak, . . . are called the coefficients and

x0 is the centre of expansion of the power series (7.29).

From the definition of the power series it is clear that the power series is a function

of the variable x.

The case that you will mostly encounter is x0 = 0. Then power series (7.29) reads

∞∑

k=0

ak xk = a0 + a1 x + a2 x2 + . . . + ak xk + . . . .

The partial sums of the power series (7.29) are given by the polynomials

Sn(x) =
n∑

k=0

ak (x − x0)
k = a0 + a1 (x − x0) + a2 (x − x0)

2 + . . . + an (x − x0)
n.

Note that it is allowed that some or even all of the coefficients ak are zero.

We give some examples of power series.

Example 7.21 (power series)

The following expressions are power series:

(a) In the power series

∞∑

k=0

x2k = 1 + x2 + x4 + x6 + x8 + . . . , (7.30)

about x0 = 0, we have ak = 1 if k is even and ak = 0 if k is odd. All the odd powers

of x are missing.
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(b) In the power series

∞∑

k=0

xk

k!
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ . . . , (7.31)

about x0 = 0 the coefficients are given by ak = 1/k! for all k ∈ N0.

(c) An example of a power series about x0 = 1 is given by

∞∑

k=0

(x − 1)k.

Here we have the coefficients ak = 1 for all k ∈ N0.

(d) Let a > 0 be a constant. The power series

∞∑

k=1

(−1)k ak

k
(x + 2)k =

∞∑

k=1

(−1)k ak

k

(
x − (−2)

)k
= −a (x + 2) +

a2

2
(x + 2)2 + . . .

is a power series about x0 = −2 with the coefficients ak = (−1)k ak/k, k ∈ N. 2

A crucial question about power series is the following:

For which values of x does the power series converge?

When we talk about the convergence of a power series at a point x, then we

will think of x as fixed and the power series with this value of x,
∞∑

k=0

ak (x − x0)
k = a0 + a1 (x − x0) + a2 (x − x0)

2 + . . . + ak (x − x0)
k + . . . , (7.32)

is just a series of real numbers. For each fixed x, we can discuss its convergence.

Thus a power series (7.32) converges at a (fixed) point x if at this fixed point

x the sequence of the partial sums {Sn(x)},

Sn(x) =
n∑

k=0

ak (x − x0)
k = a0 + a1 (x − x0) + a2 (x − x0)

2 + . . . + ak (x − x0)
n

converges. We observe that the power series converges always at x = x0, since

for x = x0 all but the first term are zero.

Example 7.22 (convergence of geometric series)

From Lemma 7.15, we know that
∞∑

k=0

a xk

converges to the function a/(1 − x) if |x| < 1 and diverges (does not converge) if

|x| ≥ 1. 2
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Example 7.23 (power series related to the geometric series)

Show that ∞∑

k=0

(x − 1)k

converges for x ∈ (0, 2) and diverges for x with x ≤ 0 and x ≥ 2.

Solution: We let y = x − 1, then from the geometric series

∞∑

k=0

(x − 1)k =
∞∑

k=0

yk =
1

1 − y
=

1

1 − (x − 1)
=

1

2 − x
if |y| < 1,

and for |y| ≥ 1 the series diverges. Thus
∑∞

k=0(x−1)k converges for |y| = |x−1| < 1,

that is, for x ∈ (0, 2), and it diverges for |y| = |x − 1| ≥ 1, that is, for x ≤ 0 and

x ≥ 2. 2

Example 7.24 (power series related to the geometric series)

Show that ∞∑

k=0

x2k

converges for x with |x| < 1 and diverges for |x| ≥ 1.

Solution: Letting y = x2, we find, from the geometric series,

∞∑

k=0

x2k =
∞∑

k=0

yk =
1

1 − y
=

1

1 − x2
if |y| = |x2| < 1,

and
∑∞

k=0 x2k =
∑∞

k=0 yk diverges if |y| = |x2| ≥ 1. Thus the series converges for

|x| < 1 and diverges for |x| ≥ 1 2

In the last two examples we have exploited our knowledge of the geometric series to

obtain information about the convergence a given series. This is not always possible,

but a discussion how to investigate the convergence of an arbitrary power series goes

beyond the scope of this course.

7.5 Maclaurin Series and Taylor series

In Lemma 7.15, we have seen that the geometric series satisfies

∞∑

k=0

xk =
1

1 − x
for all x with |x| < 1. (7.33)
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We can interpret (7.33) in the following way: The function f(x) = 1/(1 − x) has

the power series expansion about x0 given by the left-hand side of (7.33)

Can we expand every smooth function into a power series expansion

about x0, and if yes, how do we obtain the coefficients ak?

This question leads us to the Taylor series of a function about a point x0: If the

function is so smooth that it has derivatives of arbitrarily high order, then we can

indeed expand the function into a power series about x0, the so-called Taylor series

about x0! The Maclaurin series mentioned in the section heading is a special

case and the most common type of a Taylor series. We will find an explicit formula

for the coefficients ak that involves the values of f and its derivatives at x0.

If we have for a smooth function (given by a closed non-series representation)

f(x) =
∞∑

k=0

ak xk = a0 + a1 x + a2 x2 + . . . + ak xk + . . . for all x close to x0 = 0,

(7.34)

then how are the values of the coefficients ak related to the function f?

Letting x = x0 = 0 gives that

f(0) = a0 ⇔ a0 = f(0) =
f(0)

0!
. (7.35)

To get rid of the constant term a0 of the power series we differentiate (7.34), where

we may differentiate the series term by term, that is, we may just move the differ-

entiation behind the summation and differentiate the individual terms of the series.

Differentiating with respect to x gives that

f ′(x) =
d

dx

[ ∞∑

k=0

ak xk

]
=

∞∑

k=0

d

dx

[
ak xk

]
=

∞∑

k=1

ak k xk−1

= a1 + a2 2 x + a3 3 x2 + . . . + ak k xk−1 + . . . , (7.36)

where we have used (a0)
′ = 0. Letting x = 0 in (7.36) gives that that

f ′(0) = a1 ⇔ a1 = f ′(0) =
f ′(0)

1!
. (7.37)

We differentiate again and obtain

f ′′(x) =
d

dx

[ ∞∑

k=1

ak k xk−1

]
=

∞∑

k=1

d

dx

[
ak k xk−1

]
=

∞∑

k=2

ak k (k − 1)xk−2
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= a2 2 + a3 6 x + . . . + ak

(
k(k − 1)

)
xk−2 + . . . , (7.38)

where we have used (a1)
′ = 0. Letting x = 0 in (7.38) gives that

f ′′(0) = a2 2 ⇔ a2 =
f ′′(0)

2
=

f ′′(0)

2!
. (7.39)

Substituting (7.35), (7.37), and (7.39) into the power series (7.34) yields

f(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 + a3x

3 + . . . + ak xk + . . . . (7.40)

Continuing in this way, that is, differentiating 3-times, 4-times, . . . , k-times, . . . ,

gives that

ak =
f (k)(0)

k!
for all k = 0, 1, 2, 3, 4, . . . . (7.41)

We see that (7.35), (7.37), and (7.39) are indeed special cases of (7.41). Substituting

the coefficients (7.41) into (7.34) yields

f(x) =
∞∑

k=0

ak xk =
∞∑

k=0

f (k)(0)

k!
xk

which is the so-called Maclaurin series of the function f .

Definition 7.25 (Maclaurin series of a function)

The Maclaurin series of a smooth function f(x) is defined by

T (f, 0)(x) =
∞∑

k=0

f (k)(0)

k!
xk = f(0) + f ′(0)x +

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + . . . .

From setting x = 0, we see that always

T (f, 0)(0) = f(0),

but for x different from zero, we cannot know whether T (f, 0)(x) = f(x) holds

or not without further investigation.

We give some examples of Maclaurin series.

Example 7.26 (Maclaurin series of exp(x))

Find the Maclaurin series for the exponential function f(x) = exp(x) = ex.
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Solution: We have that f ′(x) = (ex)′ = ex = f(x), and from repeated application

of (ex)′ = ex we find

f (k)(x) =
dk

dxk
ex = ex, k = 0, 1, 2, 3, . . .

Evaluation of the derivatives at x = 0 yields

f (k)(0) = e0 = 1, k = 0, 1, 2, 3, . . . .

Hence the Maclaurin series of f(x) = ex is given by

T (f, 0)(x) =
∞∑

k=0

f (k)(0)

k!
xk =

∞∑

k=0

1

k!
xk = 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+ . . . .

It is possible to show that the Maclaurin series of f(x) = ex converges for all x ∈ R

to the function f(x) = ex. 2

Example 7.27 (Maclaurin series of sin(x))

Find the Maclaurin series for the function f(x) = sin(x).

Solution: We have that

f(x) = sin(x), f ′(x) = cos(x), f ′′(x) = − sin(x),

f ′′′(x) = − cos(x), f (4)(x) = sin(x) = f(x)

If we continue differentiating we find that the even order derivatives (note k = 2ℓ,

ℓ = 0, 1, 2, 3, . . . , describes all even non-negative integers) are given by

f (2ℓ)(x) = (−1)ℓ sin(x). (7.42)

Analogously, the odd order derivatives (note that k = 2ℓ + 1, ℓ = 0, 1, 2, 3 . . . ,

describes all odd positive integers) are given by

f (2ℓ+1)(x) = (−1)ℓ cos(x). (7.43)

Evaluation of the derivatives at x = 0 yields

f(0) = sin(0) = 0, f ′(0) = cos(0) = 1, f ′′(0) = − sin(0) = 0,

f ′′′(0) = − cos(0) = −1, f (4)(0) = sin(0) = 0, . . . .

Using the general formulas (7.42) and (7.43) we find

f (2ℓ)(0) = (−1)ℓ sin(0) = 0 for all ℓ = 0, 1, 2, 3 . . . ,
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f (2ℓ+1)(0) = (−1)ℓ cos(0) = (−1)ℓ × 1 = (−1)ℓ for all ℓ = 0, 1, 2, 3 . . . .

We see that all even order derivatives have at x = 0 the value zero and thus the

Maclaurin series of f(x) = sin(x) is given by

T (f, 0)(x) =
∞∑

k=0

f (k)(0)

k!
xk =

∞∑

ℓ=0

f (2ℓ+1)(0)

(2ℓ + 1)!
x2ℓ+1 =

∞∑

ℓ=0

(−1)ℓ

(2ℓ + 1)!
x2ℓ+1

= x − x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− x11

11!
+ . . . .

It is possible to show that the Maclaurin series of f(x) = sin(x) converges for all

x ∈ R to sin(x). 2

Example 7.28 (Maclaurin series of cos(x))

The Maclaurin series for the function f(x) = cos(x) is

T (f, 0)(x) =
∞∑

ℓ=0

(−1)ℓ

(2ℓ)!
x2ℓ = 1 − x2

2!
+

x4

4!
− x6

6!
+ . . . .

We will show this on the exercise sheet for this chapter. The Maclaurin series of

f(x) = cos(x) converges for all x ∈ R to the function f(x) = cos(x). 2

Example 7.29 (Maclaurin series of f(x) = 1/(1 − x))

From Lemma 7.15, we have

geometic series =
∞∑

k=0

xk =
1

1 − x
for all x with |x| < 1.

Thus we would expect the Maclaurin series of the function f(x) = 1/(1 − x) to be

the geometric series. We will show that this is indeed the case! From the chain rule

f(x) = (1−x)−1, f ′(x) = (1−x)−2, f ′′(x) = 2 (1−x)−3, f ′′′(x) = 3! (1−x)−4,

and for general k ∈ N0

f (k)(x) = k! (1 − x)−(k+1) and thus f (k)(0) = k! (1 − 0)−(k+1) = k!.

Thus the Maclaurin series of f(x) = 1/(1 − x) is given by

T (f, 0)(x) =
∞∑

k=0

f (k)(0)

k!
xk =

∞∑

k=0

k!

k!
xk =

∞∑

k=0

xk = 1 + x + x2 + x3 + x4 + x5 + . . . ,

which is indeed the geometric series. 2
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Example 7.30 (Maclaurin series of ln(x + 1))

Find the Maclaurin series for the function f(x) = ln(1 + x).

Solution: We observe that f(x) = ln(x + 1) is defined for x > −1 and so it makes

sense to consider the Maclaurin series. We have that

f(x) = ln(1 + x), f ′(x) =
1

1 + x
, f ′′(x) = − 1

(1 + x)2
,

f ′′′(x) =
2

(1 + x)3
, f (4)(x) = − 2 × 3

(1 + x)4
, f (5)(x) =

2 × 3 × 4

(1 + x)5
, . . .

We find the general formula

f(x) = ln(1 + x) and f (k)(x) =
(−k)k−1(k − 1)!

(1 + x)k
, k = 1, 2, 3, . . . ,

and evaluating at x = 0 yields

f(0) = ln(1) = 0, and f (k)(0) = (−1)k−1(k − 1)!, k = 1, 2, 3, . . . .

Thus the Maclaurin series of the function f(x) = ln(x + 1) is given by

T (f, 0)(x) = f(0) +
∞∑

k=1

f (k)(0)

k!
xk =

∞∑

k=1

(−1)k−1(k − 1)!

k!
xk

=
∞∑

i=1

(−1)k−1

k
xk = x − x2

2
+

x3

3
− x4

4
+ . . . .

It can be shown that the Maclaurin series of f(x) = ln(x + 1) converges for all x

with |x| < 1, that is, for x ∈ (−1, 1) to the function f(x) = ln(x + 1). 2

In analogy to the Maclaurin series we can calculate the power series expansion

of a smooth function about x0, where now the values of the function and its

derivatives at x0 are used in the definition of the coefficients.

Definition 7.31 (Taylor series of a function)

The Taylor series for a smooth function f(x) about x0 is defined by

T (f, x0)(x) =
∞∑

k=0

f (k)(x0)

k!
(x − x0)

k

= f(x0) + f ′(x0) (x − x0) +
f ′′(x0)

2!
(x − x0)

2 +
f ′′′(x0)

3!
(x − x0)

3 + . . . .
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We observe that for x0 = 0 the Taylor series T (f, x0) becomes just the

Maclaurin series T (f, 0) of f . So the Taylor series is the generalization of the

Maclaurin series where we expand the function f about an arbitrary point x0. We

will mostly encounter Mclaurin series in this course and only very occasionally Tay-

lor series about a point x0 with x0 6= 0.

We give two examples of Taylor series about a point x0 with x0 6= 0.

Example 7.32 (Taylor series of ln(x) about x0 = 1)

Determine the Taylor series of f(x) = ln(x) about x0 = 1.

Solution: We compute the derivatives of the function f(x) = ln(x).

f ′(x) =
1

x
, f ′′(x) =

(−1)

x2
, f ′′′(x) =

2!

x3
, . . . , f (k)(x) =

(−1)k−1(k − 1)!

xk
.

Evaluating at x = 1 yields

f(1) = ln(1) = 0, f ′(1) = 1 = 0!, f ′′(1) = −1 = −1!, f ′′′(1) = 2!

and in the general case

f (k)(1) = (−1)k−1 (k − 1)! for all k = 1, 2, 3, . . . .

Thus the Taylor series of f(x) = ln(x) about x0 = 1 is given by

T (f, 1)(x) =
∞∑

k=0

f (k)(1)

k!
(x − 1)k =

∞∑

k=1

(−1)k−1(k − 1)!

k!
(x − 1)k =

∞∑

k=1

(−1)k−1

k
(x − 1)k

= (x − 1) − 1

2
(x − 1)2 +

1

3
(x − 1)3 − 1

4
(x − 1)4 + . . . .

It can be shown that the Taylor series of f(x) = ln(x) about x0 = 1 converges for

all x with |x − 1| < 1 to ln(x), and that it diverges for all x with |x − 1| > 1. 2

Example 7.33 (Taylor series of sin(x) about x0 = π/4)

Find the first five terms in the Taylor series for the function f(x) = sin(x) about

x0 = π/4.

Solution: We have that

f(x) = sin(x), f ′(x) = cos(x), f ′′(x) = − sin(x),

f ′′′(x) = − cos(x), f (4)(x) = sin(x) = f(x), . . .



204 7. Series Expansions and Approximations

So taking x = x0 = π/4 gives that

f(π/4) = sin(π/4) =
1√
2
, f ′(π/4) = cos(π/4) =

1√
2
,

f ′′(π/4) = − sin(π/4) = − 1√
2
, f ′′′(π/4) = − cos(π/4) = − 1√

2
,

f (4)(π/4) = sin(π/4) = f(π/4) =
1√
2
, . . .

That the Taylor series of f(x) = sin(x) about x0 = π/4 is given by

T (f, π/4)(x) =
∞∑

k=0

f (k)(π/4)

k!

(
x − π

4

)k

= f(π/4) + f ′(π/4)
(
x − π

4

)

+
f ′′(π/4)

2!

(
x − π

4

)2

+
f ′′′(π/4)

3!

(
x − π

4

)3

+
f (4)(π/4)

4!

(
x − π

4

)4

+ . . .

=
1√
2

+
1√
2

(
x − π

4

)
− 1

2!

1√
2

(
x − π

4

)2

− 1

3!

1√
2

(
x − π

4

)3

+
1

4!

1√
2

(
x − π

4

)4

+ . . .

=
1√
2

[
1 +

(
x − π

4

)
− 1

2

(
x − π

4

)2

− 1

6

(
x − π

4

)3

+
1

24

(
x − π

4

)4

+ . . .

]
. 2

7.6 Approximation of a Function by the Taylor

Polynomials

If we compute the first few terms of the Taylor series of f about x0, then we have

a polynomial and for x close to x0 we may expect that this polynomial provides a

reasonable approximation of f .

Definition 7.34 (Taylor polynomials)

Let f : (a, b) → R be a smooth enough function, and let x0 ∈ (a, b). The polyno-

mial Sn(f, x0) of degree n, obtained by taking the first n + 1 terms of the Taylor

series T (f, x0) of f about x0, that is,

Sn(f, x0)(x) =
n∑

k=0

f (k)(x0)

k!
(x − x0)

k

= f(x0) + f ′(x0)(x − x0) +
f ′′(x0)

2!
(x − x0)

2 + . . . +
f (n)(x0)

n!
(x − x0)

n, (7.44)

is called the Taylor polynomial of degree n of f about x0.
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By definition, the Taylor polynomials of f about x0 are just the partial sums of

the Taylor series of f about x0, that is,

T (f, x0)(x) =
∞∑

k=0

f (k)(x0)

k!
(x − x0)

k = lim
n→∞

n∑

k=0

f (k)(x0)

k!
(x − x0)

k = lim
n→∞

Sn(f, x0).

For the special case of x0 = 0, the Taylor polynomials are the partial sums of the

Maclaurin series, and (7.44) reads

Sn(f, 0)(x) =
n∑

k=0

f (k)(0)

k!
xk = f(0) + f ′(0)x +

f ′′(0)

2!
x2 + . . . +

f (n)(0)

n!
xn. (7.45)

Example 7.35 (Taylor polynomials for exp(x) about x0 = 0)

Find the Taylor polynomials of the exponential function f(x) = exp(x) = ex about

x0 = 0.

Solution: In Example 7.26, we have seen that the Maclaurin series of the exponential

function is given by

T (t, 0) =
∞∑

k=0

1

k!
xk = 1 + x +

x2

2!
+

x3

3!
+ . . . +

xk

k!
+ . . . .

The Taylor polynomial Sn(f, 0) of f(x) = ex of degree n about x0 = 0 is the partial

sum up to k = n of the Maclaurin series, and thus

Sn(f, 0)(x) =
n∑

k=0

1

k!
xk = 1 + x +

x2

2!
+

x3

3!
+ . . . +

xn

n!
.

We write down all Taylor polynomials up to degree 3 explicitly:

S0(f, 0)(x) = 1, (7.46)

S1(f, 0)(x) = 1 + x, (7.47)

S2(f, 0)(x) = 1 + x +
x2

2!
, (7.48)

S3(f, 0)(x) = 1 + x +
x2

2!
+

x3

3!
. (7.49)

The Taylor polynomial Sn(f, 0) of degree n = 0 is a constant, of degree n = 1 is an

affine linear function, of degree n = 2 is a quadratic function, and of degree n = 3

is a cubic function. 2



206 7. Series Expansions and Approximations

Now we want to use the Taylor polynomial (7.49) of f(x) = ex about x0 = 0 of

degree n = 3 to approximate f(x) = ex for x close to x0 = 0. We evaluate

S3(f, 0)(x) = 1 + x +
x2

2!
+

x3

3!
= 1 + x +

x2

2
+

x3

6

at x = 1/2 and x = −1/2 to get an approximation of the values f(1/2) = e1/2 and

f(−1/2) = e−1/2, respectively. We have

S3(f, 0)(1/2) = 1 +
1

2
+

(1/2)2

2
+

(1/2)3

6
= 1 +

1

2
+

1

8
+

1

48

=
48 + 24 + 6 + 1

48
=

79

48
≈ 1.6458,

S3(f, 0)(−1/2) = 1 − 1

2
+

(−1/2)2

2
+

(−1/2)3

6
= 1 − 1

2
+

1

8
− 1

48

=
48 − 24 + 6 − 1

48
=

29

48
≈ 0.60417,

and the exact values of the function are

f(1/2) = e1/2 ≈ 1.6487 and f(−1/2) = e−1/2 ≈ 0.60653.

We determine the errors

e1/2 − 79

48
≈ 0.0028879 and e−1/2 − 29

48
≈ 0.0023640,

and we see that the errors of the approximations are of the order 3 × 10−3. Thus

for x = 1/2 and x = −1/2 the Taylor polynomial of degree n = 3 of f(x) = ex

about x0 = 0 provides a good approximation of the values f(1/2) = e1/2 and

f(−1/2) = e−1/2, respectively. This is illustrated in Figure 7.1.

We discuss some more examples where Taylor polynomials are used to approximate

the functions close to the point of expansion x0.

Example 7.36 (approximation of exp(±1/2) by Taylor polynomials)

Use the Taylor polynomials of degree n = 1 and n = 2 of f(x) = exp(x) = ex about

x0 = 0 to get an approximation of f(1/2) and f(−1/2).

Solution: For the Taylor polynomial of degree n = 2 of f(x) = ex about x0 = 0,

S2(f, 0)(x) = 1 + x +
x2

2!
= 1 + x +

x2

2
,

we find

S2(f, 0)(1/2) = 1 +
1

2
+

(1/2)2

2
= 1 +

1

2
+

1

8
=

8 + 4 + 1

8
=

13

8
= 1.625,
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S2(f, 0)(−1/2) = 1 − 1

2
+

(1/2)2

2
= 1 − 1

2
+

1

8
=

8 − 4 + 1

8
=

5

8
= 0.625.

To compare with the true values

f(1/2) = e1/2 ≈ 1.6487 and f(−1/2) = e−1/2 ≈ 0.60653,

we work out the errors

e1/2 − 13

8
≈ 0.023721 and e−1/2 − 5

8
≈ −0.018469.

We see that the approximation is worse than for the Taylor polynomial of degree

n = 3; the error is of the order 2 × 10−2.

If we take the linear approximation given by the Taylor polynomial of degree n = 1,

S1(f, 0)(x) = 1 + x,

then

S1(f, 0)(1/2) = 1 +
1

2
=

3

2
= 1.5, S2(f, 0)(−1/2) = 1 − 1

2
=

1

2
= 0.5,

which is clearly an extremely crude approximation. The actual errors are

e1/2 − 1.5 ≈ 0.14872 and e−1/2 − 0.5 ≈ 0.10653,

and we see that the errors are of the order 1.5 × 10−1. 2

1.5

x

1

0.5-1

0.5

0

2

0 1

2.5

-0.5

y y

6

x

2-1 0 1

4

0

2

-2

Figure 7.1: On the left, we see f(x) = ex (red), and its Taylor polynomials (about

x0 = 0) of degrees n = 1 (green) and n = 2 (yellow); and on the right, we see

f(x) = ex (red), and its Taylor polynomials (about x0 = 0) of degrees n = 1

(green), n = 2 (yellow), and n = 3 (blue).
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Before we discuss another example, let us take a look at what we are doing: Assume

that the function f has the power series expansion about x0

T (f, x0)(x) =
∞∑

k=0

f (k)(x0)

k!
(x − x0)

k = f(x0) + f ′(x0) (x − x0)

+
f ′′(x0)

2!
(x − x0)

2 +
f ′′′(x0)

3!
(x − x0)

3 +
f (4)(x0)

4!
(x − x0)

4 + . . . , (7.50)

and that in addition

T (f, x0)(x) = f(x) for all x close to x0.

For x very close to x0, say |x − x0| ≤ 10−1, the terms (x − x0)
k with k ≥ 4 will be

very small. Indeed |x − x0|4 ≤ (10−1)4 = 10−4, and more generally

|x − x0|k ≤ (10−1)k = 10−k.

If we are satisfied with an accuracy up to the order 10−3, then we can ignore the

terms in the Taylor series with k ≥ 4. Thus for x with |x − x0| ≤ 10−1, the Taylor

polynomial of degree n = 3,

S3(f, x0)(x) = f(x0) + f ′(x0) (x − x0) +
f ′′(x0)

2!
(x − x0)

2 +
f ′′′(x0)

3!
(x − x0)

3,

usually provides a very good approximation of f(x) for x with |x− x0| ≤ 10−1.

From our analysis we expect the approximation to be accurate up to the order 10−3.

Approximations by the first two or three or four terms of a Taylor series are com-

monly used in physics, engineering, and mathematics. Towards the end of this

section we will get some evidence that they are indeed a good approximation and

we will even get a ‘rule of thumb’ for estimating the error.

Example 7.37 (approximation of sin(x) by its Taylor polynomials)

In Example 7.27 we saw that the Maclaurin series of f(x) = sin(x) is

sin(x) =
∞∑

k=0

(−1)k

(2k + 1)!
x2k+1 = x − x3

3!
+

x5

5!
− x7

7!
+ . . . .

Thus the Taylor polynomial of degree n = 3 is given by

S3(f, 0) = x − x3

6
.

and we expect it to be a reasonable approximation of f(x) = sin(x) for small x.
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Let’s test this for some particular values of x. For x = π/10, a pocket calculator

gives that

sin(π/10) ≈ 0.309017 and S3(f, 0)(π/10) =
π

10
− (π/10)3

6
≈ 0.308992.

The error of the approximation is of the order 2.5× 10−5, and so the approximation

of sin(π/10) is very good.

However, for x = π

sin(π) = 0 and S3(f, 0)(π) = π − π3

6
≈ −2.026120,

and so the approximation of sin(π) is very poor. This is not so surprising since π is

comparatively far away from x0 = 0. To overcome this, we could consider truncating

after a greater number of terms. For example,

S7(f, 0)(π) = π − π3

3!
+

π5

5!
− π7

7!
≈ −0.0752206,

which gives a better approximation of sin(π) = 0. In Figure 7.2, we show sin(x) and

its Taylor polynomials about x0 = 0 of degree n = 3, n = 5, and n = 7. 2

x

3210-1-2-3

y

2

1

0

-1

-2

Figure 7.2: Graphs of sin(x) (red) and its Taylor polynomials about x0 = 0 of degree

n = 3 (green), n = 5 (yellow), and n = 7 (blue).

How large has the degree of the Taylor polynomial about x0 to be, in order

to get a good approximation of the function close to x0? A rough answer to

this question is given by the following ‘rule of thumb’, which you will apply on

the corresponding exercise sheet.
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Rule of Thumb: The error of the Taylor polynomial

Sn(f, x0)(x) =
n∑

k=0

f (k)(x0)

k!
(x − x0)

k

as an approximation of f(x) for x close to x0 has approximately the same order

of magnitude as the first non-zero term that was omitted from the Taylor series

expansion when we approximated f(x) by Sn(f, x0)(x). In formulas,

error ≈ f (n+1)(x0)

(n + 1)!
(x − x0)

n+1

7.7 Differentiation and Integration of Power Se-

ries

In this very short section we discuss that power series may be differentiated and

integrated term by term, and we give some examples.

Theorem 7.38 (differentiation/integration of power series)

Consider a power series about x0,

∞∑

k=0

ak (x − x0)
k. (7.51)

Then we may differentiate the power series (7.51) term by term, that

is,

d

dx

[ ∞∑

k=0

ak (x − x0)
k

]
=

∞∑

k=0

d

dx

[
ak (x − x0)

k
]

=
∞∑

k=1

ak k (x − x0)
k−1. (7.52)

We may also integrate (7.51) term by term, and an indefinite integral of

the power series (7.51) is

∫ x

x0

[ ∞∑

k=0

ak (t − x0)
k

]
dt =

∞∑

k=0

∫ x

x0

[
ak (t − x0)

k
]
dt =

∞∑

k=1

ak

k + 1
(x − x0)

k+1.

(7.53)

Usually, if (7.51) converges at some x then (7.52) and (7.53) will also converge

at this x.
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We can differentiate and integrate the power series of f arbitrarily often term by

term.

Example 7.39 (derivative of sin(x))

For any real number x ∈ R, we have

sin(x) =
∞∑

ℓ=0

(−1)ℓ

(2ℓ + 1)!
x2ℓ+1 = x − x3

3!
+

x5

5!
− x7

7!
+ . . . .

From Theorem 7.38, we have

[
sin(x)

]′
=

d

dx

[ ∞∑

ℓ=0

(−1)ℓ

(2ℓ + 1)!
x2ℓ+1

]
=

∞∑

ℓ=0

d

dx

[
(−1)ℓ

(2ℓ + 1)!
x2ℓ+1

]

=
∞∑

ℓ=0

(−1)ℓ

(2ℓ + 1)!
(2ℓ + 1)x2ℓ =

∞∑

ℓ=0

(−1)ℓ

(2ℓ)!
x2ℓ.

We recognize the last series as the Maclaurin series of cos(x). This is what we

expected, since
[
sin(x)

]′
= cos(x). 2

Example 7.40 (primitive of 1/(1 − x))

From Lemma 7.15 and Example 7.29, we know that the Maclaurin series of f(x) =

1/(1 − x) satisfies for |x| < 1

1

1 − x
= T (f, 0)(x) =

∞∑

k=0

xk = 1 + x + x2 + x3 + . . . .

We compute an indefinite integral on both sides.

∫ x

0

1

1 − t
dt = − [ln(1 − t)]x0 = − ln(1 − x) + ln(1) = − ln(1 − x),

and integrating the series term by term gives

∫ x

0

[ ∞∑

k=0

tk

]
dt =

∞∑

k=0

∫ x

0

tk dt =
∞∑

k=0

tk+1

k + 1

∣∣∣∣
x

0

=
∞∑

k=0

xk+1

k + 1
=

∞∑

ℓ=1

xℓ

ℓ
=

∞∑

k=1

xk

k
,

where we have substituted the index ℓ = k + 1 in the second last step and have

renamed ℓ = k in the last step. From Theorem 7.38, we know now that for x with

|x| < 1,

− ln(1 − x) =
∞∑

k=1

xk

k
= x +

x2

2
+

x3

3
+

x4

4
+ . . . . (7.54)
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We verify that this agrees with the Maclaurin of ln(1+x) series from Example 7.30:

Multiplying (7.54) by (−1) yields

ln(1 − x) = −
∞∑

k=1

xk

k
=

∞∑

k=1

(−1)xk

k
.

If we know substitute x = −y, then we obtain for |y| < 1

ln(1+y) =
∞∑

k=1

(−1) (−y)k

k
=

∞∑

k=1

(−1) (−1)k yk

k
=

∞∑

k=1

(−1)k+1 yk

k
=

∞∑

k=1

(−1)k−1 yk

k
,

(7.55)

where we have removed one factor (−1)2 = 1 from (−1)k+1 in the last step. The

series on the right-hand side is the Maclaurin series of ln(1+y) which we determined

in Example 7.30. 2



Chapter 8

Complex Numbers

In this chapter we will get an introduction to complex numbers. From the mathe-

matical point of view, the introduction of the complex numbers closes a ‘gap’ as now

every quadratic equation has now two (complex) roots. The complex numbers are

an extension of the real numbers, and real numbers are special cases of complex

numbers. As we will learn, a complex number can be represented by a pair of real

numbers and thus is geometrically a point in the (complex) plane. However,

we will also learn two different representations of complex numbers: one involves

trigonometric functions, and the other one is based on Euler’s formula and is the

so-called polar form of complex numbers. The ability to switch between the three

representations of complex numbers facilitates adding, subtracting, multiplying, and

dividing complex numbers enormously. We will learn how to take nth roots of com-

plex numbers, and find that now any complex or real number has exactly n distinct

complex nth roots. We will also introduce the (natural) exponential function

and the (natural) logarithm for complex numbers. In physics and engineering

complex numbers are used to describe alternating current circuits.

8.1 Introduction

The introduction of complex numbers is most natural starting with the equation

x2 + 1 = 0 ⇔ x2 = −1. (8.1)

We know that this equation has no solution in the real numbers, but somehow this

is not satisfactory: every quadratic equation should have two roots! To remedy this

213
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we introduce the imaginary unit i as the (complex) number satisfying

i2 = −1.

Then the equation (8.1) has two solutions −i and +i. Indeed

(±i)2 = i2 = −1 and ± i = ±
√
−1.

We can multiply the imaginary unit with real numbers and add and subtract such

multiples of i. For example

5 i + 3 i = 8 i and 2 i − 10 i = −8 i.

We can also take integer powers of (multiples of) the imaginary unit, where we

simplify using (±i)2 = −1. For example

(2 i)2 = 22 i2 = 4 (−1) = −4 and (−3 i)3 = (−3)3 i3 = −27 i2 i = −27 (−1) i = 27 i.

Definition 8.1 (complex numbers)

A complex number z is defined as a number of the form

z = x + i y, (8.2)

where x and y are real numbers and i is the imaginary unit. In (8.2), the real

number Re(z) = x is called the real part of z, and the real number Im(z) = y is

called the imaginary part of z. The representation (8.2) of a complex number

z is also referred to as the Cartesian form.

Using (±i)2 = −1 and otherwise performing multiplication as usual we can easily

add, subtract and multiply complex numbers.

Lemma 8.2 (addition and subtraction of complex numbers)

Let z1 = x1 + i y1 and z2 = x2 + i y2 be two complex numbers.

(i) Addition: z1 + z2 =
(
x1 + i y1

)
+
(
x2 + i y2

)

=
(
x1 + x2

)
+ i
(
y1 + y2

)
.

(ii) Substraction: z1 − z2 =
(
x1 + i y1

)
−
(
x2 + i y2

)

=
(
x1 − x2

)
+ i
(
y1 − y2

)
.
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Example 8.3 (addition and substraction of complex numbers)

(1 + i 2) + (4 + i 3) = (1 + 4) + i (2 + 3) = 5 + i 5,

(2 + i 11) − (−1 + i 7) = (2 − (−1)) + i (11 − 7) = 3 + i 4,

(3 + i 5) − (2 − i
√

3) = (3 − 2) + i
(
5 − (−

√
3)
)

= 1 + i (5 +
√

3). 2

Lemma 8.4 (multiplication of complex numbers)

Let z1 = x1 + i y1 and z2 = x2 + i y2 be two complex numbers. Then the product

of z1 and z2 is given by

z1 × z2 = z1 z2 = (x1 + i y1) (x2 + i y2)

= x1 x2 + i x1 y2 + i y1 x2 + i2 y1 y2

=
(
x1 x2 − y1 y2

)
+ i
(
x1 y2 + y1 x2

)
.

Example 8.5 (product of complex numbers)

(1 + i 2) (4 + i 3) = 4 + i 3 + i 8 + i2 6 = 4 + i 11 + (−1) 6 = −2 + i 11,

(2 + i
√

2)(2 − i
√

2) = 4 − i 2
√

2 + i 2
√

2 − i2 2 = 4 − (−1) 2 = 6. 2

8.2 The Complex Plane (Argand Diagram)

x

y

real axis

im
ag

in
ar

y 
ax

is

z

(x,y)

Figure 8.1: Visualization of z = x + i y as the point (x, y) in the complex plane.
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The so-called complex plane can be thought of as our usual (x, y)-plane, and it

allows us to visualize complex numbers. More precisely, a complex number z = x+i y

can be represented as the point or vector (x, y) in the complex plane as illustrated

in Figure 8.1. Diagrams like the one in Figure 8.1 (for visualizing complex numbers

in the complex plane) are also called Argand diagrams.

With the help of this visualization of complex numbers the sum and difference of

two complex numbers can be determined geometrically as illustrated in Figure 8.2.

Let z1 = x1 + i y1 and z2 = x2 + i y2. The sum w = z1 + z2 is represented by the

vertex of the parallelogram in the complex plane whose other three vertices are 0, z1

and z2. The difference u = z2−z1 is represented by the vertex of the parallelogram

whose other vertices are 0, −z1 and z2.

w=z
 +

z 2

1

z

−z

z2

1

im
ag

in
ar

y 
ax

is

real axisu=z  −z 
2

1
1

Figure 8.2: Visualization of the sum w = z1 + z2 and the difference u = z2 − z1 in

the complex plane.

Definition 8.6 (complex conjugate of a complex number)

The complex conjugate of the complex number z = x + i y is defined by

z̄ = x − i y.
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The complex conjugate z̄ = x− i y of the complex number z = x + i y has the same

real part as z, that is, Re(z̄) = x = Re(z), but the imaginary part Im(z̄) = −y =

−Im(z) differs from Im(z) = y by the factor −1. Thus we see that in the complex

plane the complex conjugate number can be obtained by reflecting the complex

number z on the real axis.

real axis

im
ag

in
ar

y 
ax

is

z

(x,y)y

−y

x

z

(x,−y)

Figure 8.3: The complex conjugate z̄ = x − i y of a complex number z = x + i y is

obtained by refection on the real axis.

Example 8.7 (complex conjugate number)

z = 3 + i 2, z̄ = 3 − i 2;

w =
√

2 − i 7, w =
√

2 + i 7;

u = −13 + i
5

3
, u = −13 − i

5

3
. 2

We observe that for a complex number z = x + i y the complex conjugate ¯̄z of the

complex conjugate number z̄ = x − i y of z is again z, that is,

¯̄z = x − i y = x + i (−y) = x − i (−y) = x + i y = z.
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We will see that the complex conjugate z̄ = x− i y of a complex number z = x + i y

is very useful for dividing by that complex number. We start with investigating

what happens if we multiply a complex number z = x+ i y by its complex conjugate

number z̄ = x − i y. Then

z z̄ =
(
x + i y

)(
x − i y

)

= x2 − i x y + i y x − i2 y2

= x2 − (−1) y2 = x2 + y2.

From z z̄ = x2 + y2 we see that the product of a complex number with its complex

conjugate is real and not negative!

Definition 8.8 (modulus)

The modulus of the complex number z = x + iy is defined by

|z| =
√

z z̄ =
√

x2 + y2.

x

y

real axis

im
ag

in
ar

y 
ax

is

(x,y)

z

|z| =   x
 +y 2

2

Figure 8.4: Visualization of the modulus |z| =
√

z z̄ =
√

x2 + y2 of the complex

number z = x + i y.

From Pythagoras theorem, we see in Figure 8.4 that the modulus |z| =
√

z z̄ =√
x2 + y2 is just the length of the straight line from the origin (0, 0) to the

point (x, y).
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With the help of z z̄ = x2 + y2 we can now easily compute the quotient z1/z2 of

two complex numbers z1 = x1 + i y1 and z2 = x2 + i y2 6= 0. To do this we

multiply both the numerator and the denominator of the quotient

z1

z2

=
x1 + i y1

x2 + i y2

by z̄2 = x2 − i y2 and use z2 z̄2 = x2
2 + y2

2

z1

z2

=
z1 z̄2

z2 z̄2

=
(x1 + i y1)(x2 − i y2)

(x2 + i y2)(x2 − i y2)
=

(x1 + i y1)(x2 − i y2)

x2
2 + y2

2

=
z1 z̄2

|z2|2
.

We summarize this in a lemma:

Lemma 8.9 (division by complex numbers)

The division of z1 = x1 + i y1 by z2 = x2 + i y2 6= 0 is given by

z1

z2

=
z1 z̄2

z2 z̄2

=
z1 z̄2

|z2|2
=

(x1 + i y1)(x2 − i y2)

x2
2 + y2

2

. (8.3)

We note that the two right-most expressions in (8.3) bring us back to the case of

the product of two complex numbers since |z2|2 = x2
2 + y2

2 is a positive real number.

Example 8.10 (division of complex numbers)

Express the following quotients in Cartesian form z = x + i y.

(a)
2 + i

3 − i
, (b)

1

i3
, (c)

1

3 + i 4
.

Solution: We use Lemma 8.9 above.

(a) We multiply the numerator and denominator with 3 − i = 3 + i and simplify

2 + i

3 − i
=

(2 + i)(3 + i)

(3 − i)(3 + i)
=

6 + 2 i + 3 i + i2

9 + 3 i − 3 i − i2
=

6 + 2 i + 3 i − 1

9 − (−1)
=

5 + 5 i

10
=

1

2
+ i

1

2
.

(b) We observe that i3 = i2 i = (−1) i = −i. Now we multiply the numerator and

denominator by i3 = −i = i. This yields

1

i3
=

1

−i
=

i

(−i) i
=

i

1
= i.

(c) We multiply the numerator and denominator with 3 + i 4 = 3 − i 4 and obtain

(using (3 + i 4)(3 − i 4) = 32 + 42 = 9 + 16 = 25)

1

3 + i 4
=

3 − i 4

(3 + i 4)(3 − i 4)
=

3 − i 4

9 + 16
=

3 − i 4

25
=

3

25
− i

4

25
.

Do not forget to simplify as far as possible! 2
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8.3 Polar Form of Complex Numbers

Another representation of complex numbers in the complex plane is given with the

help of so-called polar coordinates. From Figure 8.5 we see that the complex

number z = x + i y, or equivalently the point (x, y), can be described by giving the

angle φ ∈ (−π, π] and the length r of the line from the origin (0, 0) to the point

(x, y).

x

y

real axis

im
ag

in
ar

y 
ax

is

(x,y)

z

φ

x=r cos(  )

2
2

y=
r sin(  )

φ

φ

=   x
 +y 

r=|z|

Figure 8.5: Visualization of z = x + i y in the polar coordinate representation with

angle φ ∈ (−π, π] and radius r > 0.

From Figure 8.5 we see that

x = r cos(φ), y = r sin(φ), and r = |z| =
√

x2 + y2, (8.4)

and obtain the following representation of z = x + i y in terms of r and the angle φ

z = r cos(φ) + i r cos(φ) = r
(
cos(φ) + i sin(φ)

)
(8.5)

We will say that (r, φ) is the polar coordinate representation of (8.5) We call

φ ∈ (−π, π] the angle of z and r > 0 the radius of z.

If we have only z = x+ iy and do not know r and φ, how do we find them?

Clearly r = |z| =
√

x2 + y2 and from (8.4)

cos(φ) =
x

r
and sin(φ) =

y

r
. (8.6)
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We have also tan(φ) = y/x but this equation is less useful than (8.6), since it

does not allow the determination of φ without additional information. From the

periodicity of the trigonometric functions sin(φ) and cos(φ), we know that

sin(φ) = sin(φ + k 2π) for all − π < φ ≤ π and all k ∈ Z,

cos(φ) = cos(φ + k 2π) for all − π < φ ≤ π and all k ∈ Z.

Thus it is not possible to find a uniquely determined argument/angle φ that

satisfies (8.6). However, for −π < φ ≤ π, the angle φ corresponds to a uniquely

determined point on the unit circle, and we will explain below how to exploit

this to find φ satisfying −π < φ ≤ π and (8.6).

Definition 8.11 (argument and principal value of the argument)

Let z = x + i y 6= 0 be a complex number. Let r ∈ R with r > 0 and φ ∈ R be

such that

z = r cos(φ) + i r cos(φ) = r
(
cos(φ) + i sin(φ)

)
.

Then φ is called the argument of z, denoted by φ = arg(z). The uniquely

determined argument φ = arg(z) of z with −π < φ ≤ π is called the

principal value of the argument of z. The principal value of the argument of z

is denoted by Arg(z).

Given z = x+i y, how do we find the principal value Arg(z) of the argument

of z?

x

x<0  and  y>0 x>0  and  y>0

x<0  and  y<0 x>0  and  y<0

0<Arg(z)< <Arg(z)<

<Arg(z)<   <Arg(z)<

π/2π/2 π

−π/2−π −π/2 0

y Quadrant IQuadrant II

Quadrant III Quadrant IV

Figure 8.6: The signs of x = r cos(φ) and y = r sin(φ) determine the quadrant in

which the principal value φ = Arg(z) of the argument of z = x + i y is located.
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Once we have calculated r = |z| =
√

x2 + y2, we have from (8.6) that

cos(φ) =
x

r
and sin(φ) =

y

r
. (8.7)

Since the principle value φ = Arg(z) of the argument of z satisfies by definition

−π < φ ≤ π, there exists exactly one angle φ = Arg(z) for which (8.7) holds

true. Interpreting
(
cos(φ), sin(φ)

)
as a point on the unit circle, then the signs of

x and y are the signs of cos(φ) and sin(φ), respectively, and they tell us in which

quadrant the angle φ = Arg(z) is located. This is illustrated in Figure 8.6. Once

we have determined which quadrant contains φ = Arg(z), we can easily determine

the principle value φ = Arg(z) from the value of sin(φ) = y/r or cos(φ) = x/r.

In order to find the principle value φ = Arg(z) of the argument of z with the help

of (8.7), it is useful to know the following table.

angle φ in radians 0 π/6 φ/4 φ/3 π/2

angle φ in degree 0 30 45 60 90

sin(φ)

√
0

2
= 0

√
1

2
=

1

2

√
2

2
=

1√
2

√
3

2

√
4

2
= 1

cos(φ)

√
4

2
= 1

√
3

2

√
2

2
=

1√
2

√
1

2
=

1

2

√
0

2
= 0

Table 8.1: Important values of sin(φ) and cos(φ) in the first quadrant. Note that

the values are all of the form
√

k/2 with k ∈ {0, 1, 2, 3, 4}.

Each complex number z = x+i y has a unique polar coordinate representation

(r, φ), where r = |z| =
√

x2 + y2 and φ = Arg(z). (8.8)

We demonstrate for some examples of complex numbers z = x+ i y how we find the

polar coordinate representation (8.8).

When calculating Arg(z), it may be helpful to sketch an Argand diagram of z.

Example 8.12 (polar coordinate representation (r, φ) with φ = Arg(z))

Find the polar coordinate representation (r, φ) of the complex number z = 1+ i
√

3.
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Solution: We have x = 1 > 0 and y =
√

3 > 0 and thus the principal value

φ = Arg(z) of the argument of z lies in the first quadrant, that is, 0 ≤ φ ≤ π/2 (see

also left picture in Figure 8.7). We find that

r =
√

x2 + y2 =

√
12 + (

√
3)2 =

√
4 = 2,

and, since x = 1 and y =
√

3, we know

cos(φ) =
x

r
=

1

2
and sin(φ) =

y

r
=

√
3

2
.

Thus from Table 8.1, the principle value is φ = Arg(z) = π/3 and z = 1 + i
√

3 has

the polar coordinate representation (r, φ) = (2, π/3). (It is always useful to test the

result by converting back:

r
(
cos(φ) + i sin(φ)

)
= 2

(
cos(π/3) + i sin(π/3)

)
= 2

(
1

2
+ i

√
3

2

)
= 1 + i

√
3,

as expected.) 2

3

2

1

1 2−1 −2

−1

−2

2

π/3

Im(z)

Re(z) −1

1

1

−1

Re(z)

Im(z)

1+
i−1+i

1−i
−1

−i

Figure 8.7: Argand diagram of 1 + i
√

3 on the left, and on the right, an Argand

diagram of the complex numbers 1 + i, −1 + i, 1 − i, and −1 − i.

Example 8.13 (polar coordinate representation (r, φ) with φ = Arg(z))

Determine the polar coordinate representation (r, φ) of each of the following complex

numbers:

(a) z = 1 + i, (b) z = −1 + i, (c) z = 1 − i, (d) z = −1 − i.
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Solution: We have indicated the four complex numbers in the Argand diagram on

the right-hand side in Figure 8.7.

(a) We have x = 1 and y = 1, and thus

r = |z| =
√

x2 + y2 =
√

12 + 12 =
√

2.

Thus the principal argument φ = Arg(z) satisfies

cos(φ) =
x

r
=

1√
2

and sin(φ) =
y

r
=

1√
2
.

Since cos(φ) > 0 and sin(φ) > 0, we know that φ = Arg(z) lies in the first quadrant,

that is, 0 ≤ φ ≤ π/2. Thus, from Table 8.1, Arg(z) = φ = π/4. Thus the polar

coordinate representation of z = 1 + i is (r, φ) = (
√

2, π/4).

(b) We have x = −1 and y = 1, and thus

r = |z| =
√

x2 + y2 =
√

(−1)2 + 12 =
√

2.

Thus the principal argument φ = Arg(z) satisfies

cos(φ) =
x

r
=

−1√
2

and sin(φ) =
y

r
=

1√
2
.

Since cos(φ) < 0 and sin(φ) > 0, we know that φ = Arg(z) lies in the second

quadrant, that is, π/2 ≤ φ ≤ π. Thus −π/2 ≥ −φ ≥ −π and from adding π we get

π/2 ≥ π − φ ≥ 0, that is, π − φ is in the first quadrant. From Lemma 2.10,

sin(π − φ) = sin(π) cos(φ) − sin(φ) cos(π) = 0 − sin(φ) (−1) = sin(φ) =
1√
2
.

Thus we find, using Table 8.1, π − φ = π/4, or equivalently φ = π − π/4 = 3π/4.

Thus Arg(z) = φ = 3π/4, and the polar coordinate representation of z = −1 + i is

(r, φ) = (
√

2, 3π/4).

(c) We have x = 1 and y = −1, and thus

r = |z| =
√

x2 + y2 =
√

12 + (−1)2 =
√

2.

Thus the principal argument φ = Arg(z) satisfies

cos(φ) =
x

r
=

1√
2

and sin(φ) =
y

r
=

−1√
2
.

Since cos(φ) > 0 and sin(φ) < 0, we know that φ = Arg(z) lies in the fourth

quadrant, that is, −π/2 ≤ φ ≤ 0. Thus −φ satisfies π/2 ≥ −φ ≥ 0, and hence −φ

lies in the first quadrant. From cos(−φ) = cos(φ) = 1/
√

2 and Table 8.1, we find

−φ = π/4, and thus Arg(z) = φ = −π/4. Thus the polar coordinate representation

of z = 1 − i is (r, φ) = (
√

2,−π/4).
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(d) We have x = −1 and y = −1, and thus

r = |z| =
√

x2 + y2 =
√

(−1)2 + (−1)2 =
√

2.

Thus the principal argument φ = Arg(z) satisfies

cos(φ) =
x

r
=

−1√
2

and sin(φ) =
y

r
=

−1√
2
.

Since cos(φ) < 0 and sin(φ) < 0, we know that φ = Arg(z) lies in the third quadrant,

that is, −π < φ ≤ −π/2. Thus, from adding π, 0 < φ + π ≤ π/2, and hence φ + π

lies in the first quadrant. From Lemma 2.10,

sin(φ + π) = sin(φ) cos(π) + sin(π) cos(φ) = sin(φ) (−1) + 0 = − sin(φ) =
1√
2
.

Using Table 8.1, we see that φ + π = π/4. Thus Arg(z) = φ = π/4 − π = −3π/4,

and the polar coordinate representation of z = −1 − i is (r, φ) = (
√

2,−3π/4). 2

The third and last representation of complex numbers follows from (8.5) with Euler’s

formula below.

Lemma 8.14 (Euler’s formula)

Let φ ∈ R. Then

exp(i φ) = ei φ = cos(φ) + i sin(φ). (8.9)

To understand (8.9), we have to say in which sense we interpret exp(i φ) = eiφ in

formula (8.9). Since we know how to compute sums and integer powers of complex

numbers, we can define exp(i φ) via the Maclaurin series expansion of exp(x).

The Maclaurin series of exp(x) = ex converges for all x ∈ R to the function exp(x) =

ex (see Example 7.26), that is,

exp(x) = ex =
∞∑

k=0

xk

k!
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+ . . . for all x ∈ R. (8.10)

To defined exp(i φ) = eiφ we now substitute x = i φ in the series expansion (8.10).

Thus we find

exp(i φ) = eiφ =
∞∑

k=0

(i φ)k

k!
= 1 + i φ +

(i φ)2

2!
+

(i φ)3

3!
+

(i φ)4

4!
+ . . .

= 1 + i φ +
(−1)φ2

2!
+

(−1) i φ3

3!
+

φ4

4!
+ . . . =

∞∑

ℓ=0

(i φ)2ℓ

(2ℓ)!
+

∞∑

ℓ=0

(i φ)2ℓ+1

(2ℓ + 1)!
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=
∞∑

ℓ=0

(−1)ℓ φ2ℓ

(2ℓ)!
+ i

∞∑

ℓ=0

(−1)ℓ φ2ℓ+1

(2ℓ + 1)!
=

[
1 − φ2

2!
+

φ4

4!
− . . .

]
+ i

[
φ − φ3

3!
+ . . .

]
,

(8.11)

where we have used (i φ)2ℓ = (i2)ℓ φ2ℓ = (−1)ℓ φ2ℓ and (i φ)2ℓ+1 = i (i2)ℓ φ2ℓ+1 =

i (−1)ℓ φ2ℓ+1. From the last chapter, we know that (see Examples 7.27 and 7.28)

cos(x) =
∞∑

ℓ=0

(−1)ℓ x2ℓ

(2ℓ)!
= 1 − x2

2!
+

x4

4!
− x6

6!
+ . . . for all x ∈ R,

sin(x) =
∞∑

ℓ=0

(−1)ℓ x2ℓ+1

(2ℓ + 1)!
= x − x3

3!
+

x5

5!
− x7

7!
+ . . . for all x ∈ R.

Thus we recognize the series in the last line of (8.11) as the Maclaurin series of

cos(φ) and sin(φ), respectively. Replacing the series in the last line of (8.11) by

cos(φ) and sin(φ), respectively, we obtain

exp(i φ) = ei φ = cos(φ) + i sin(φ),

and we have just proved Euler’s formula.

Euler’s formula (8.9) for φ = π gives the following interesting formula

eiπ = cos(π) + i sin(π) = −1 + 0 ⇔ eiπ + 1 = 0.

This equation links the five fundamental numbers 0, 1, e, π, and i.

If we use Euler’s formula for a complex number z = x + i y, with polar coordinate

representation (r, φ) with radius r = |z| and φ = Arg(z), then we obtain

z = r
(
cos(φ) + i sin(φ)

)
= r ei φ.

Definition 8.15 (polar form of a complex number)

The polar form of a complex number z = x + i y is

z = r ei φ, where r = |z| and φ = Arg(z). (8.12)

Example 8.16 (polar form of complex numbers)

Find the polar form of the complex numbers

(a) z = 1 + i
√

3, (b) u = 1 + i, (c) w = 1 − i.

Solution:
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(a) In Example 8.12, we found that z = 1 + i
√

3 has the polar coordinate represen-

tation (r, φ) = (2, π/3). Thus from (8.12), z = 1 + i
√

3 has the polar form

z = 2 ei π/3.

(b) From Example 8.13 (a), we know that u = 1 + i has the polar coordinate

representation (r, φ) = (
√

2, π/4). Thus from (8.12), u = 1 + i has the polar form

u =
√

2 ei π/4.

(c) From Example 8.13 (c), we know that w = 1 − i has the polar coordinate

representation (r, φ) = (
√

2,−π/4). Thus from (8.12), w = 1− i has the polar form

w =
√

2 e−i π/4. 2

Multiplication and division of complex numbers in polar form:

The polar form of complex numbers gives us a much easier way of multiplying and

dividing complex numbers. If z1 = r1 ei φ1 and z2 = r2 ei φ2 are two complex numbers

in polar form, then

z1 z2 = r1 ei φ1 r2 ei φ2 = r1 r2 ei (φ1+φ2).

Thus we have

|z1 z2| = |z1| |z2| and arg(z1 z2) = Arg(z1) + Arg(z2).

However, we may need to add ±2π to Arg(z1) + Arg(z2) = φ1 + φ2 to obtain

Arg(z1 z2), since there is not guarantee that φ1 + φ2 ∈ (−π, π].

Furthermore, the quotient of two complex number z1 = r1 ei φ1 and z2 = r2 ei φ2 in

polar form, where r2 6= 0, is given by

z1

z2

=
r1 ei φ1

r2 ei φ2
=

r1

r2

ei (φ1−φ2).

So, we find that
∣∣∣∣
z1

z2

∣∣∣∣ =
|z1|
|z2|

and arg

(
z1

z2

)
= Arg(z1) − Arg(z2).

Again, we may need to add ±2π to Arg(z1)−Arg(z2) = φ1−φ2 to obtain Arg(z1/z2).

In particular, if z = r ei φ and r 6= 0 then

1

z
=

1 ei 0

r ei φ
=

1

r
e−i φ.
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Example 8.17 (multiplication and division in polar form)

Use the polar form of z = 1 + i
√

3 and w = 1 + i to compute

(a)
(
1 + i

√
3
)
(1 + i), (b)

1 + i
√

3

1 + i
.

Solution: From Example 8.16 (a) and (b), we know that

z = 1 + i
√

3 = 2 ei π/3 and w = 1 + i =
√

2 ei π/4.

Thus we have that

(a)
(
1 + i

√
3
)
(1 + i) =

(
2 ei π/3

)(√
2 ei π/4

)
= 2

√
2 ei (π

3
+ π

4
) = 2

√
2 ei 7π/12,

(b)
1 + i

√
3

1 + i
=

2 ei π/3

√
2 ei π/4

=
2√
2

ei (π
3
−π

4
) =

√
2 ei π/12. 2

Remark 8.18 (use Cartesian form for addition and subtraction)

While the multiplication and division of complex numbers is much easier in the polar

form, the polar form does not allow an easy handling of addition and subtraction.

Therefore you should use the Cartesian form of complex numbers for ad-

dition and subtraction!

Example 8.19 (addition and subtraction of complex numbers)

Calculate

2 ei π/3 +
√

2 ei π/4 and 2 ei π/3 −
√

2 ei π/4.

Solution: Let z1 = 2 ei π/3 and z2 =
√

2 ei π/4. Then z1 = r1 ei φ1 and z2 = r2 ei φ2

with

r1 = 2, φ1 =
π

3
, r2 =

√
2, φ2 =

π

4
.

We convert z1 and z2 into Cartesian form so that we can easily perform the addition

and subtraction. We have z1 = x1 + i y1 and z2 = x2 + i y2 with

x1 = r1 cos(φ1) = 2 cos
(π

3

)
= 2 × 1

2
= 1,

y1 = r1 sin(φ1) = 2 sin
(π

3

)
= 2 ×

√
3

2
=

√
3,

x2 = r2 cos(φ2) =
√

2 cos
(π

4

)
=

√
2 × 1√

2
= 1,

y2 = r2 sin(φ2) =
√

2 sin
(π

4

)
=

√
2 × 1√

2
= 1.
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Thus z1 = x1 + i y1 = 1 + i
√

3 and z2 = x2 + i y2 = 1 + i, and so

2 ei π/3 +
√

2 ei π/4 = (1 + i
√

3) + (1 + i) = 2 + i (
√

3 + 1),

2 ei π/3 −
√

2 ei π/4 = (1 + i
√

3) − (1 + i) = i (
√

3 − 1). 2

Remark 8.20 (Complex conjugate in polar form)

Let z = r ei φ. Then from Euler’s formula

z = r ei φ = r
(
cos(φ) + i sin(φ)

)
= r cos(φ) + i r sin(φ).

Thus we have that the complex conjugate of z = r ei φ is given by

z̄ = r cos(φ) − i r sin(φ) = r cos(−φ) + i r sin(−φ) = r e−i φ,

where we have used cos(φ) = cos(−φ) and − sin(φ) = sin(−φ) in the second last

step. Thus we find

r ei φ = r e−i φ. (8.13)

Remark 8.21 (relation between trigonometric and hyperbolic functions)

From Euler’s formula (8.9) and from (8.13), we know that for φ ∈ R

ei φ = cos(φ) + i sin(φ), e−i φ = ei φ = cos(φ) − i sin(φ).

So from adding the two equations and subtracting the second from the first, respec-

tively, we obtain

ei φ + e−i φ = 2 cos(φ) and ei φ − e−i φ = 2 i sin(φ),

and thus we find

cosh(i φ) =
ei φ + e−i φ

2
= cos(φ) and

1

i
sinh(i φ) =

ei φ − e−i φ

2i
= sin(φ).

Letting θ = i φ gives that

φ =
θ

i
=

−iθ

−i2
= −i θ, (8.14)

and so

cosh(θ) = cosh(i φ) = cos(φ) = cos(−i θ), (8.15)

sinh(θ) = sinh(i φ) = i sin(φ) = i sin(−i θ). (8.16)

The formulas (8.15), and (8.16), with (8.14), establish an important relation between

the hyperbolic and the trigonometric functions.
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As an application of Euler’s formula we will now prove the addition theorems for

sin(φ + θ) and cos(φ + θ), which are (see Lemma 2.10)

cos(φ + θ) = cos(φ) cos(θ) − sin(φ) sin(θ), (8.17)

sin(φ + θ) = cos(φ) sin(θ) + sin(φ) cos(θ). (8.18)

Proof of (8.17) and (8.18): From the properties of the exponential function

ei φ ei θ = ei (φ+θ),

and using Euler’s formula we have that
[
cos(φ) + i sin(φ)

] [
cos(θ) + i sin(θ)

]
= cos(φ + θ) + i sin(φ + θ).

Writing the left-hand side as a sum yields
[
cos(φ) + i sin(φ)

] [
cos(θ) + i sin(θ)

]

= cos(φ) cos(θ) + i cos(φ) sin(θ) + i sin(φ) cos(θ) + i2 sin(φ) sin(θ)

= cos(φ) cos(θ) − sin(φ) sin(θ) + i
[
cos(φ) sin(θ) + sin(φ) cos(θ)

]
,

and substituting into the previous equation yields

cos(φ) cos(θ)−sin(φ) sin(θ)+i
[
cos(φ) sin(θ)+sin(φ) cos(θ)

]
= cos(φ+θ)+i sin(φ+θ).

Equating real and imaginary parts, respectively, gives

cos(φ) cos(θ) − sin(φ) sin(θ) = cos(φ + θ)

cos(φ) sin(θ) + sin(φ) cos(θ) = sin(φ + θ),

as claimed. 2

From the formula
(
ei φ
)n

= ei n φ, we obtain with Euler’s formula (8.9) De Moivre’s

theorem below.

Theorem 8.22 (De Moivre’s Theorem)

For any integer n and any real number φ,

[
cos(φ) + i sin(φ)

]n
= cos(nφ) + i sin(nφ),

that is, (
ei φ
)n

= ei n φ.

De Moivre’s theorem is very useful for proving trigonometric identities. This is

illustrated in the following two examples.
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Example 8.23 (special case of Lemma 2.10)

Taking n = 2 in De Moivre’s formula gives that

[
cos(φ) + i sin(φ)

]2
=
[
ei φ
]2

= ei 2 φ = cos(2 φ) + i sin(2 φ).

Writing the left-hand side as a sum yields

[
cos(φ) + i sin(φ)

]2
=

[
cos(φ)

]2
+ 2 i cos(φ) sin(φ) + i2

[
sin(φ)

]2

=
[
cos(φ)

]2 −
[
sin(φ)

]2
+ 2 i cos(φ) sin(φ).

Thus [
cos(φ)

]2 −
[
sin(φ)

]2
+ 2 i cos(φ) sin(φ) = cos(2 φ) + i sin(2 φ).

Equating real and imaginary parts gives, respectively, gives

[
cos(φ)

]2 −
[
sin(φ)

]2
= cos(2 φ) and 2 cos(φ) sin(φ) = sin(2 φ).

These are the addition theorems (8.17) and (8.18) for the special case that θ = φ.

2

Example 8.24 (application of De Moivre’s formula)

Prove that

cos(3 φ) = 4
[
cos(φ)

]3 − 3 cos(φ) and sin(3 φ) = 3 sin(φ) − 4
[
sin(φ)

]3
.

Solution: Taking n = 3 in De Moivre’s Theorem gives that

cos(3 φ) + i sin(3 φ) = ei 3 φ =
[
ei φ
]3

=
[
cos(φ) + i sin(φ)

]3
. (8.19)

We expand the right-hand side into a sum, using the binomial formula,

[
cos(φ) + i sin(φ)

]3

=
[
cos(φ)

]3
+ 3 i

[
cos(φ)

]2
sin(φ) + 3 i2 cos(φ)

[
sin(φ)

]2
+ i3

[
sin(φ)

]3

=
[
cos(φ)

]3
+ 3 i

[
cos(φ)

]2
sin(φ) + 3 (−1) cos(φ)

[
sin(φ)

]2
+ i (−1)

[
sin(φ)

]3

=
([

cos(φ)
]3 − 3 cos(φ)

[
sin(φ)

]2)
+ i

(
3
[
cos(φ)

]2
sin(φ) −

[
sin(φ)

]3)
.

From substituting into (8.19) we get

cos(3 φ) + i sin(3 φ)

=
([

cos(φ)
]3 − 3 cos(φ)

[
sin(φ)

]2)
+ i

(
3
[
cos(φ)

]2
sin(φ) −

[
sin(φ)

]3)
.
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Equating real and imaginary parts, respectively, and using
[
sin(φ)

]2
+
[
cos(φ)

]2
= 1

gives

cos(3 φ) =
[
cos(φ)

]3 − 3 cos(φ)
[
sin(φ)

]2

=
[
cos(φ)

]3 − 3 cos(φ)
(
1 −

[
cos(φ)

]2)

= 4
[
cos(φ)

]3 − 3 cos(φ)

and

sin(3 φ) = 3
[
cos(φ)

]2
sin(φ) −

[
sin(φ)

]3

= 3
(
1 −

[
sin(φ)

]2)
sin(φ) −

[
sin(φ)

]3

= 3 sin(φ) − 4
[
sin(φ)

]3
. 2

8.4 Roots of Complex Numbers

In this section we learn how to take nth roots of complex numbers. Unlike in the

case of real numbers, a complex number will now have n distinct nth roots.

We can easily find all nth roots by using the polar form of complex numbers.

Definition 8.25 (nth root(s) of a complex number)

Given a complex number z, an nth root of z is any complex number w such that

wn = z.

An nth root is also denoted by w = z1/n.

Remark 8.26 (z = r ei φ with r > 0 has exactly n distinct nth roots)

Every non-zero complex number z has exactly n distinct nth roots. It is

easiest to find these by writing z in its polar form z = r ei φ. Then we have

z = r ei φ = r ei (φ+2πm) for any integer m.

Since r > 0, r has exactly one positive real nth root r1/n. So from (a b)1/n = a1/n b1/n

with a = r and b = ei(φ+2πm) (even though b is a complex number).

z1/n =
(
r ei (φ+2πm)

)1/n
= r1/n ei φ+2πm

n = r1/n ei ( φ
n

+ 2πm
n

) for any integer m.
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Since 2πm/n has values in [0, 2π) for exactly m = 0, 1, 2, 3, . . . , n − 1, and since

2πm/n = 2π for m = n, we find that exactly n of these roots are distinct. The

distinct roots are given by

z1/n = r1/n ei( φ
n

+ 2πm
n

) for m = 0, 1, 2, 3, . . . , n − 1.

In the complex plane these roots lie all equally spaced on the circle with center

in the origin (0, 0) and radius r1/n (as illustrated in Figure 8.8): For m = 0,

we have the root r1/n ei φ
n , and to get the next root we add 2π/n to the angle φ/n.

Thus the roots are equally spaced, and for m = n we have reached a full rotation

and are again at the point on the circle with angle φ/n (since eiφ/n = ei(φ/n+2π)).

r
1/4

r
1/4

r
1/4

exp(     )φ/4

exp(              )φ/4+3π/2r
1/4

exp(          )φ/4+πr
1/4

φ
π/2

π/2

π/2
π/2

imaginary
axis

real
axis

exp(            )φ/4+π/2

Figure 8.8: All 4th roots of z = r eφ. Here 2π/n = 2π/4 = π/2.

We discuss some examples.

Example 8.27 (finding 2nd roots)

Find the square roots of z = 1.

Solution: We have that

z = 1 = 1 ei 0 = 1 ei 2π m for any integer m.
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Hence the roots are given by

z1/2 = 11/2 ei 2πm/2 = ei mπ for any integer m.

So the (distinct) square roots of 1 are ei0π = 1 (for m = 0) band eiπ = −1 (for

m = 1), as expected. This is illustrated in the left picture in Figure 8.9. 2

1

axis
imaginary

axis
real

−1 2

axis
imaginary

axis
real

π/6

−2

Figure 8.9: The 2nd roots of z = 1 on the left, and the 3rd roots of z = 8 i on the

right.

Example 8.28 (finding 3rd roots)

Find the third roots of z = 8 i.

Solution: We have that

z = 8 i = 8 ei π
2 = 8 ei (π

2
+2πm) = 8 eiπ

2
(1+4m) for any integer m.

Since 23 = 8, we have 81/3 = 2, and hence

z1/3 = 81/3 eiπ
6
(1+4m) = 2 eiπ

6
(1+4m) for any integer m.

So the third roots of 8 i are (set m = 0, m = 1, and m = 2)

2 eiπ
6 , 2 ei 5π

6 , and 2 ei 9π
6 = 2 ei( 9π

6
−2π) = 2 e−i 3π

6 = 2 e−iπ
2 = −2 i.

These three roots are equally spaced on a circle of radius 2 with center in the origin

(0, 0) of the complex plane, as illustrated in the right picture in Figure 8.9. 2
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Example 8.29 (fractional powers of complex numbers)

Find in polar form all complex numbers z such that z = i2/5.

Solution: Using i2 = −1, we can write z = i2/5 as z = i2/5 = (i2)1/5 = (−1)1/5.

Thus we are looking for all numbers z such that

z5 = −1 = 1 eiπ = 1 ei (π+2πm) = 1 eiπ(1+2m) for any integer m.

Hence, from taking the 5th root

z = 11/5 ei
π(1+2m)

5 = ei
π(1+2m)

5 for any integer m.

So the 5th roots of i2 = −1, and thus the complex numbers z given by z = i2/5, are

z = eiπ
5 , z = ei 3π

5 , eiπ = −1, z = ei 7π
5 = e−i 3π

5 , z = ei 9π
5 = ei( 9π

5
−2π) = e−iπ

5 .

These five roots are equally spaced on a circle of radius 1 with center in the origin

(0, 0) of the complex plane. 2

8.5 Exponential Function and Logarithm of Com-

plex Numbers

Now we finally learn how to calculate the exponential function and the natural

logarithm of a complex number. As in the case of the nth root, we will see that

the natural logarithm is not unique.

While we do not justify and explain the definition of the exponential function and the

logarithm for a complex variable mathematically thoroughly, we give some comments

that help with the intuitive understanding.

Let us assume that the usual properties of the exponential function do also hold for

complex numbers, which is indeed the case. For every complex number z = x + i y

(where x, y ∈ R) there exist exactly one φ ∈ (−π, π] and one n ∈ Z such that

y = φ + 2π n. Then we have (from ea+b = ea eb)

ez = ex+i y = ex ei y = r ei (φ+2πn) = r ei φ with r = ex, φ = Arg(z) = y − 2π n.

(8.20)

The right-most expression in (8.20) is in polar form r ei φ with the radius r = ex and

the principle value φ = Arg(z) = y − 2π n of the argument of z. Thus we can use

ez = ex+i y = ex ei y, z = x + i y. (8.21)

to define the exponential function for all complex numbers z = x + i y.
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Example 8.30 (exponential function of complex numbers)

e2+i 3π = e2 ei 3π = e2 ei π = e2
[
cos(π) + i sin(π)

]
= −e2,

e1+i π/3 = e1 ei π/3 = e
[
cos(π/3) + i sin(π/3)

]
= e

[
1

2
+ i

√
3

2

]
=

e

2
+ i

√
3 e

2
,

where we have used Table 8.1 2

The logarithm for real numbers was defined as the inverse function of the exponential

function, that is, we have

eln(a) = a for all a > 0 and ln
(
eb
)

= b for all b ∈ R. (8.22)

When we introduce the complex logarithm, then we want that (8.22) holds for

complex a and b (with suitable restrictions on on a and b). To introduce the complex

logarithm, we start with a complex number in polar form z = r ei φ. Then

z = r ei φ = r ei (φ+2πn) for any integer n.

Since our logarithm with a complex variable shall also satisfy ln(a b) = ln(a) + ln(b)

for complex a and b, we write

ln(z) = ln
(
r ei φ

)
= ln

(
r ei (φ+2πn)

)
= ln(r) + ln

(
ei (φ+2πn)

)
= ln(r) + i (φ + 2πn),

(8.23)

where n ∈ Z and where we have used in the last step that we want the logarithm to

be the inverse function of the exponential function, and thus ln(ea) = a. Here ln(r)

is the usual logarithm of the positive real number r. Thus we define the logarithm

for complex numbers by

ln(z) = ln
(
r ei φ

)
= ln(r) + i (φ + 2πn), n ∈ Z, z = r ei φ. (8.24)

Since n in (8.24) can be any integer, ln(z) has infinitely many values: all values

of ln(z) have the same real part and their imaginary parts differ by integer

multiples of 2π.

Remark 8.31 (logarithm as inverse function of exp(x))

From (8.24) and (8.21), we have now for any complex number z = r eiφ in polar

form and any integer n,

exp
(
ln(r eiφ)

)
= exp

(
ln(r) + i (φ + 2πn)

)
= exp

(
ln(r)

)
exp(i (φ + 2πn)) = r eiφ,
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where we have used in the last step ei (φ+2πn) = ei φ ei 2πn = ei φ. For any complex

number z, written in Cartesian form z = x + i y, we have from (8.24) and (8.21)

ln(ez) = ln
(
ex+i y

)
= ln

(
ex eiy

)
= ln(ex) + i (y + 2πn) = x + i (y + 2πn), n ∈ Z.

(8.25)

This is essentially what we expected for the logarithm as the inverse function of the

exponential function; only we do not have one but infinitely many values of

ln(ez). More precisely, we have a different value of ln(ez) for each integer n ∈ Z.

Strictly speaking, the exponential function has to be one-to-one in order to have an

inverse function. For example, the exponential function is one-to-one for z = r eiφ

with −π < φ < π and r > 0. Then we have from the definition of the inverse

function

ln
(
r ei φ

)
= ln(r) + ln(ei φ) = ln(r) + i φ. (8.26)

In (8.26) we only consider the value of the logarithm (8.25) for n = 0.

We give some examples.

Example 8.32 (logarithm of complex numbers)

Find the logarithm of the complex numbers

(a) z = 1 + i
√

3 and (b) z = i.

Solution: In both cases we have to first find the polar form of the given complex

number.

(a) For z = 1 + i
√

3 = r ei φ, we have x = 1 > 0 and y =
√

3 > 0. Thus the

principal argument φ = Arg(z) lies in the first quadrant, that is, 0 ≤ φ ≤ π/2.

From r = |z| =
(
12 +

√
3

2)1/2
=

√
4 = 2, we have

cos(φ) =
x

r
=

1

2
, sin(φ) =

y

r
=

√
3

2
.

Thus from the values of sine or cosine (see Table 8.1) we know that sin(π/3) =
√

3/2,

and thus the principal argument is φ = Arg(z) = π/3. Thus z = 1 + i
√

3 has the

polar form

z = 2 ei π/3 = 2 ei (π
3
+2πn) = 2 ei π ( 1

3
+2n) for any integer n.

Thus we find

ln(z) = ln(2) + i π

(
1

3
+ 2n

)
for any integer n.
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(b) If z = i, then the polar form is z = ei π/2. Thus

z = 1 ei π/2 = 1 ei (π
2
+2πn) = 1 ei π

2
(1+4n) for any integer n,

and so

ln(z) = ln(1)+i
π

2
(1+4n) = i

π

2
(1+4n) for any integer n. 2

Example 8.33 (logarithm of complex numbers)

Find the logarithm of the complex numbers

(a) z = x > 0, where x ∈ R, and (b) z = x < 0, where x ∈ R.

Solution:

(a) If z = x, with x a positive real number, then

z = x = x ei0 = x ei 2πn for any integer n,

and so

ln(z) = ln(x) + i 2πn for any integer n.

(b) If z = x, with x a negative real number, then −x > 0 and

z = (−x) (−1) = (−x) ei π = (−x) ei (π+2πn) = (−x) ei π(1+2n) for any integer n.

Thus

ln(z) = ln(−x)+i π(1+2n) for any integer n. 2



Chapter 9

Vectors

Forces and velocities are vector quantities, that is, quantities which have both

direction and magnitude. In this chapter, we will encounter vectors in three-

dimensional Euclidean space R3, that is, triples x = (x, y, z) or a = (a1, a2, a3),

where x, y, z ∈ R and a1, a2, a3 ∈ R, respectively, are the components of the vec-

tors. In Section 9.2, we will learn basic vector operations, that is, how to add and

subtract vectors and how to multiply vectors with scalars. These elementary

vector operations have geometric interpretations, and we will discuss some proper-

ties of vector addition/substraction and scalar multiplication. In Section 9.3, we

will introduce the scalar product or dot product of two vectors which results

in a scalar (a real number), and in Section 9.4 we will discuss the vector prod-

uct or cross product of two vectors which results in another vector. Both the

scalar product and the vector product will be defined geometrically, using trigono-

metric functions, and this geometric interpretation of the scalar product and

vector product is often very useful. We will also derive another formula for com-

puting the scalar product and the vector product, respectively, in terms of the

components of the two vectors.

9.1 Introduction

You will have encountered vectors in school. Here we will discuss vectors in the

so-called three dimensional Euclidean space R3 as triples of real numbers.

239
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Definition 9.1 (vector in R3)

A vector in R3 is a triple

x = (x, y, z) or a = (a1, a2, a3), where x, y, z ∈ R and a1, a2, a3 ∈ R,

respectively. The real numbers x, y, z and a1, a2, a3 are called the components

of the vector x and a, respectively. The order of the components is important,

that is, (x, y, z) 6= (y, x, z), etc..

Example 9.2 (vectors)

Two examples of vectors in R3 are a = (4, 2, 3) and b = (−1, 0, 6). For a =

(a1, a2, a3) = (4, 2, 3) we have a1 = 4, a2 = 2, and a3 = 3. For b = (−1, 0, 6) =

(b1, b2, b3) we have b1 = −1, b2 = 0, and b3 = 6. 2

Definition 9.3 (zero vector)

The zero vector is the unique vector whose components are all zero. The

zero vector is denoted by

0 = (0, 0, 0).

A vector a = (a1, a2, a3) in R3 is visualized by plotting the point with coordinates

(a1, a2, a3) and drawing an arrow that connects the origin (0, 0, 0) with (a1, a2, a3)

and points from (0, 0, 0) to (a1, a2, a3). This is indicated in Figure 9.1 below.

a

a

a

=(a  ,a  ,a  )

3

1

2

1 2 3a

y

z

x
(a  ,a  ,0)1 2

Figure 9.1: Plotting a vector a = (a1, a2, a3) in R3.
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The vector a = (a1, a2, a3), represented by the arrow with ‘arrow head’ at the

point (a1, a2, a3) in Figure 9.1 has a direction and has a length. Under length we

understand here the length of the arrow, or in words, the distance of the point

(a1, a2, a3) from the origin (0, 0, 0). The direction is intuitively the direction

into which the arrow points. We will now discuss these quantities.

Definition 9.4 (length/magnitude of a vector)

The length or magnitude of the vector a = (a1, a2, a2) is

|a| = |(a1, a2, a3)| =
√

a2
1 + a2

2 + a2
3. (9.1)

From Pythagoras’ theorem, we can see that the length/magnitude (9.1) is indeed

the length of the arrow, that is, the distance from (0, 0, 0) to the point (a1, a2, a3), as

follows: Look again at Figure 9.1 and consider the rectangle in the (x, y)-plane with

corners (0, 0, 0), (a1, 0, 0), (a1, a2, 0, ), and (0, a2, 0). The diagonal of this rectangle

(indicated as the line from (0, 0, 0) to (a1, a2, 0)) has from Pythagoras’ theorem

the length
√

a2
1 + a2

2. Now we consider the rectangle whose corners are (0, 0, 0),

(a1, a2, 0), (a1, a2, a3), and (0, 0, a3). Then the ‘bottom side’ and ‘top side’ of this

rectangle have length
√

a2
1 + a2

2 (as we worked out previously), and the other two

sides have length |a3|, since the distance from (0, 0, 0) to (0, 0, a3) is just |a3|. The

diagonal of this rectangle from (0, 0, 0) to (a1, a2, a3) is just the vector a = (a1, a2, a3).

From Pythagoras’ theorem the length of this diagonal is

√(√
a2

1 + a2
2

)2

+ a3
3 =

√
a2

1 + a2
2 + a3

3.

Thus we see that formula (9.1) gives indeed the geometric length of the vector

a = (a1, a2, a3).

Example 9.5 (length of vectors)

If a = (4, 2, 3) and b = (−1, 0, 6), then

|a| = |(4, 2, 3)| =
√

42 + 22 + 32 =
√

16 + 4 + 9 =
√

29,

|b| = |(−1, 0, 6)| =
√

(−1)2 + 02 + 62 =
√

1 + 36 =
√

37. 2

Remark 9.6 (only the zero vector has length zero)

The zero vector 0 = (0, 0, 0) satisfies

|0| = |(0, 0, 0)| =
√

02 + 02 + 02 =
√

0 = 0,
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and has thus length/magnitude |0| = 0. For any other vector a = (a1, a2, a3), we

have that at least one of the components a1, a2, a3 is different from zero. For example,

assume that a1 6= 0. Then

a2
1 > 0, a2

2 ≥ 0, and a3
3 ≥ 0 ⇒ a2

1 + a2
2 + a3

3 > 0.

Thus we can conclude that

|a| = |(a1, a2, a3)| =
√

a2
1 + a2

2 + a2
3 > 0.

We have thus verified that if a 6= 0 then |a| > 0; and if |a| = 0 then a = 0.

Now we come back to the second quantity that defines a vector, namely its di-

rection. Once we have the length of a vector x = (x, y, z), its direction can be

indicated by any vector (or arrow) pointing in the same direction as x = (x, y, z).

It is customary to describe the direction of a vector by a vector that points in the

same direction and has length one.

Definition 9.7 (unit vector)

A vector x = (x, y, z) is a unit vector if it has length/magnitude one, that

is, if

|x| =
√

x2 + y2 + z2 = 1.

Example 9.8 (unit vectors)

Show that the vectors a = (1, 0, 0) and b =
(

1√
2
, 1√

2
, 0
)

are unit vectors.

Solution: We compute the length/magnitude of each vector

|a| =
√

12 + 02 + 02 =
√

1 = 1

and

|b| =

√(
1√
2

)2

+

(
1√
2

)2

+ 02 =

√
1

2
+

1

2
=

√
1 = 1.

Since both vectors have length one, they are indeed unit vectors. 2

Once we have introduced the scalar multiplication of vectors by real numbers (and

thus the division of vectors by real numbers), we will see that the unit vector pointing

in the same direction as a given vector x can be obtained by dividing x through its

length/magnitude |x|.
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9.2 Basic Vector Operations

In this section we learn how to add and subtract vectors and how to multi-

ply vectors with scalars (real numbers). We will also discuss the geometric

interpretation of vector addition/substraction and scalar multiplication.

Definition 9.9 (addition/subtraction of vectors)

Let a = (a1, a2, a3) and b = (b1, b2, b3) be two vectors in R3. Then the sum a+b

is defined by

a + b = (a1, a2, a3) + (b1, b2, b3) =
(
a1 + b1, a2 + b2, a3 + b3

)
,

and the difference a − b is defined by

a − b = (a1, a2, a3) − (b1, b2, b3) =
(
a1 − b1, a2 − b2, a3 − b3

)
.

That is, vectors are added or subtracted by adding or subtracting the components

of the two vectors, respectively. We say, the vectors are added or subtracted

component-wise.

b

−b

aa−b

a+
b

Figure 9.2: Geometric determination of the sum a + b and the difference a − b of

the vectors a and b.

Vector addition and substraction can be geometrically visualized as indicated

in Figure 9.2: Consider the vectors a and b as plotted in Figure 9.2. Then a + b is

the vector given by the diagonal of the parallelogram spanned by the vectors a and

b with the ‘head’ of the vector as indicated. In other words, we can obtain a+b by

taking a copy of b and moving it (without changing its direction) so that its ‘tail’

touches the ‘head’ of the vector a. The ‘head’ of this copy of the vector b gives then
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the ‘head’ of the vector a + b, and the ‘tail’ of a + b is located where the ‘tail’ of a

is. The difference a−b is given as the sum a+(−b), where we interpret the vector

−b as the vector with the same length as b but pointing in the opposite direction.

In formulas, −b = (−b1,−b2,−b3).

Example 9.10 (addition/substraction of vectors)

If a = (4, 2, 3) and b = (−1, 0, 6), then

a + b = (4, 2, 3) + (−1, 0, 6) =
(
4 + (−1), 2 + 0, 3 + 6

)
= (3, 2, 9),

a − b = (4, 2, 3) − (−1, 0, 6) =
(
4 − (−1), 2 − 0, 3 − 6

)
= (5, 2,−3). 2

Definition 9.11 (scalars and scalar multiplication)

In the context of vector spaces real numbers are denoted as scalars. Let λ ∈ R be

a scalar and let x = (x, y, z) be a vector in R3. Then the scalar multiplication

of the vector x = (x, y, z) by the scalar λ is defined by

λx = λ (x, y, z) =
(
λ x, λ y, λ z

)
.

In other words, the vector x is multiplied by the scalar λ component-wise, that

is, each component is multiplied with λ.

The scalar multiplication of a vector x by a scalar λ ∈ R can also be geomet-

rically visualized which is illustrated in Figure 9.3: For λ > 0, the vector λx is

given by the vector with the same direction as x and the length λ |x|. For λ < 0,

the vector λx is given by the vector with the opposite direction as x and the length

|λ| |x|.

x
−x

x2

��
��
��

��
��
��

Figure 9.3: The vectors x, 2x, and −x.

Example 9.12 (multiplication of a vector by a scalar)

If a = (4, 2, 3) and λ = 3, then

3 a = 3 (4, 2, 3) =
(
3 × 4, 3 × 2, 3 × 3) = (12, 6, 9).
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The vector 3 a points in the same direction as a, but is three times as long.

If b = (−1, 0, 6) and λ = −2, then

−2b = (−2) (−1, 0, 6) =
(
(−2) × (−1), (−2) × 0, (−2) × 6

)
= (2, 0,−12).

The vector −2b is twice as long as b, and points in the opposite direction to b. 2

Definition 9.13 (division of a vector by a scalar)

Let λ ∈ R be a non-zero scalar, and let x = (x, y, z) ∈ R3. Then we define

x

λ
=

1

λ
x =

1

λ
(x, y, z) =

(x

λ
,
y

λ
,
z

λ

)
.

In words, x/λ is defined to be the vector obtained from scalar multiplication of x

by 1/λ, that is, x is divided component-wise by λ 6= 0.

Remark 9.14 (length of the ‘scalar multiple’ of a vector)

If x ∈ R3 is a vector and λ ∈ R is a scalar, then

|λx| = |λ| |x|. (9.2)

So λx is |λ| times as long as x. If λ > 0, then λx points in the same direction

as x; and if λ < 0, then λx points in the opposite direction to x. We can also

prove (9.2) formally: for x = (x, y, z), we have

|λx| = |λ (x, y, z)| = |(λ x, λ y, λ z)| =
√

(λ x)2 + (λ y)2 + (λ z)2

=
√

|λ|2 (x2 + y2 + z2)

= |λ|
√

x2 + y2 + z2 = |λ| |x|,

which indeed proves (9.2). 2

Definition 9.15 (parallel vectors)

Two non-zero vectors a and b in R3 are called parallel, if there exists a non-zero

scalar λ ∈ R such that

a = λb.

Remark 9.16 (unit vector in the same direction as a given vector)

If x 6= 0 then |x| > 0, and hence from (9.2)
∣∣∣∣
x

|x|

∣∣∣∣ =

∣∣∣∣
1

|x| x
∣∣∣∣ =

∣∣∣∣
1

|x|

∣∣∣∣ |x| =
1

|x| |x| =
|x|
|x| = 1.
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So the vector

x̂ =
x

|x| =
1

|x| x (9.3)

points in the same direction as x and has length 1, that is, x̂ is the unit vector in

the direction of x. From (9.3) we obtain by multiplying by |x|
|x| x̂ = x or x = |x| x̂ (9.4)

From (9.4) we see that we can describe a vector uniquely by giving the length/magnitude

|x| and the unit vector x̂ = x/|x| pointing in the same direction.

Example 9.17 (unit vectors)

If a = (4, 2, 3) and b = (−1, 0, 6), then, from Example 9.5, |a| =
√

29 and |b| =
√

37.

Thus the unit vectors in the direction of a and b are

â =
a

|a| =
1√
29

(4, 2, 3) =

(
4√
29

,
2√
29

,
3√
29

)
,

b̂ =
b

|b| =
1√
37

(−1, 0, 6) =

( −1√
37

,
0√
37

,
6√
37

)
,

respectively. 2

i

j

k

x

y

z

Figure 9.4: The cartesian unit vectors i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1).

Definition 9.18 (cartesian unit vectors)

The unit vectors

i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1),

are called the Cartesian unit vectors.
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The Cartesian unit vectors are indicated in Figure 9.4.

Remark 9.19 (representation of vector with Cartesian unit vectors)

If x = (x, y, z), then

x = (x, y, z) = x i + y j + z k.

Example 9.20 (representation of vector with Cartesian unit vectors)

If a = (4, 2, 3) and b = (−1, 0, 6), then

a = (4, 2, 3) = 4 i + 2 j + 3k,

b = (−1, 0, 6) = −1 i + 0 j + 6k = −i + 6k. 2

9.3 Scalar Product (or Dot Product)

The scalar product or dot product of two vectors gives a scalar. It is not to

be mixed up with the scalar multiplication λx of a vector x ∈ R3 by a scalar λ ∈ R

which gives a vector.

Definition 9.21 (scalar product/dot product)

Let a and b be two vectors in R3. We define the scalar product or dot product

a · b of the non-zero vectors a and b to be the scalar (real number)

a · b = |a| |b| cos(θ), (9.5)

where θ ∈ [0, π] is the angle between a and b. If a = 0 or b = 0, then we define

a · b = 0.

The scalar product a · b has a geometric interpretation: Writing the scalar

product a · b as

a · b = |a|
(
|b| cos(θ)

)
,

it is the product of the length |a| of a and the value |b| cos(θ). The value |b| cos(θ)

may be interpreted as the length of the projection of b onto the vector a, as

indicated in Figure 9.5.
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a

b

|b|

π/2θ

θcos(  ) > 0
a

b

|b| cos(  ) < 0

π/2 θ

θ

Figure 9.5: The value of the scalar product a · b is the product of the length |a| of

a and the length |b| cos(θ) of the projection of b onto a.

Example 9.22 (scalar product)

Compute the scalar product of a = (2, 2, 0) and b = (0, 1, 0).

����

����

π/4

x

y

(2,2,0)

(0,1,0)

2

1

1 2

Figure 9.6: Angle between the vectors a = (2, 2, 0) and b = (0, 1, 0).

Solution: Since the vectors have both the third component zero, we can consider

them as vectors in the (x, y)-plane. From the plot in Figure 9.6 below, we see that

the angle between the two vectors is θ = π/4. Now we compute the lengths of the

two vectors a and b, and we find

|a| = |(2, 2, 0)| =
√

22 + 22 + 02 =
√

8 = 2
√

2,

|b| = |(0, 1, 0)| =
√

02 + 12 + 01 =
√

1 = 1.
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Thus the scalar product of a and b is given by

a ·b = |a| |b| cos(θ) = 2
√

2× 1× cos(π/4) = 2
√

2× 1√
2

= 2. 2

Remark 9.23 (special cases of the scalar product)

(a) For any vector a ∈ R3, the angle between a and itself is θ = 0. So we have

cos(θ) = cos(0) = 1, giving that

a · a = |a| |a| cos(0) = |a|2.

(b) If the vectors a 6= 0 and b 6= 0 are perpendicular to each other, that is, the

angle between the a and b is π/2, then

a · b = |a| |b| cos(π/2) = |a| |b| × 0 = 0.

(c) For any two vectors a and b,

a · b = b · a. (9.6)

Remark 9.23 (b) leads to the following definition and lemma.

Definition 9.24 (orthogonal/perpendicular)

Two non-zero vectors a and b in R3 are orthogonal or perpendicular (to

each other) if the angle between the two vectors is π/2.

Lemma 9.25 (criterion for orthogonality)

Two non-zero vectors a and b in R3 are orthogonal or perpendicular to each

other if and only if

a · b = 0.

Example 9.26 (scalar products of the Cartesian unit vectors)

Any two different Cartesian unit vectors have the angle π/2, since they lie on the

axes of the coordinate system (see Figure 9.4). Thus any two different Cartesian

unit vectors are orthogonal/perpendicular to each other. Thus

i · j = j · i = 0, i · k = k · i = 0, and j · k = k · j = 0.

Furthermore, since the Cartesian unit vectors are unit vectors, we have

i · i = |i|2 = 1, j · j = |j|2 = 1, and k · k = |k|2 = 1. 2
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Theorem 9.27 (distributive law for scalar product)

For any three vectors a, b and c, we have that

a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a. (9.7)

c

b+
c

a

|b+c| 

c

|b| |c|

b
γ

cos(  )

cos(  ) cos(  )γ

γ

α
β

α

β

Figure 9.7: Geometric proof of the distributive law of scalar multiplication.

Proof of Theorem 9.27: We only need to prove the first formula in (9.7), since

the second formula in (9.7) follows immediately from the first formula and (9.6).

The vectors a, b, c, and b+ c are plotted in Figure 9.7, and the angles between the

vector a and the vectors b, c, and b + c are denoted by β, γ, and α, respectively.

We have that

a · b = |a| |b| cos(β), (9.8)

a · c = |a| |c| cos(γ), (9.9)

a · (b + c) = |a| |b + c| cos(α). (9.10)

From Figure 9.7, we see that

|b| cos(β) + |c| cos(γ) = |b + c| cos(α). (9.11)

Multiplying (9.11) with |a| yields

|a| |b| cos(β) + |a| |c| cos(γ) = |a| |b + c| cos(α),
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which, using (9.8), (9.9), and (9.10), is just

a · b + a · c = a · (b + c),

and we have proved the distributive law. 2

Remark 9.28 (scalars can be pulled out of the scalar product)

Let a and b be two vectors in R3, and let λ ∈ R be a scalar. Then

λ (a · b) = a · (λb) = (λ a) · b. (9.12)

Proof: If one of the vectors is the zero vector or if λ = 0, then all three terms in

(9.12) are zero and (9.12) holds true. Now let us assume that a 6= 0, b 6= 0, and

λ 6= 0. Let θ be the angle between a and b.

If λ > 0, then the angle between a and λb is also θ, and hence

a · (λb) = |a| |λb| cos(θ) = |a| |λ| |b| cos(θ) = λ |a| |b| cos(θ) = λ (a · b),

where we have used |λ| = λ since λ > 0.

If λ < 0, then the angle between a and λb is π−θ, and so from the addition theorem

for the cosine (see Lemma 2.10)

cos(π − θ) = cos(π) cos(θ) + sin(π) sin(θ) = (−1) cos(θ) + 0 = − cos(θ).

Thus we have, using |λ| = −λ (since λ < 0),

a · (λb) = |a| |λb| cos(π − θ) = |a| |λ| |b| × [− cos(θ)]

= |a| × (−λ) × |b| × [− cos(θ)] = λ |a| |b| cos(θ) = λ (a · b).

Thus we have proved the first equality in (9.12). The second equality in (9.12)

follows from the case already proved. Indeed, we have

(λ a) · b = b · (λ a) = λ (b · a) = λ (a · b),

where the second step follows from the first equality in (9.12). In the first and third

step we have used (9.6). 2

Lemma 9.29 (formula for the scalar product in terms of components)

Let a = (a1, a2, a3) and let b = (b1, b2, b3) be vectors in R3. Then

a · b = a1 b1 + a2 b2 + a3 b3. (9.13)
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Proof of Lemma 9.29: If a = (a1, a2, a3) and b = (b1, b2, b3), then

a = a1 i + a2 j + a3 k and b = b1 i + b2 j + b3 k.

Using the distributive law (see Theorem 9.27) and (9.12) gives that

a · b = (a1 i + a2 j + a3 k) · (b1 i + b2 j + b3 k)

= (a1 i) · (b1 i + b2 j + b3 k) + (a2 j) · (b1 i + b2 j + b3 k)

+ (a3 k) · (b1 i + b2 j + b3 k)

= (a1 i) · (b1 i) + (a1 i) · (b2 j) + (a1 i) · (b3 k)

+ (a2 j) · (b1 i) + (a2 j) · (b2 j) + (a2 j) · (b3 k)

+ (a3 k) · (b1 i) + (a3 k) · (b2 j) + (a3 k) · (b3 k)

= (a1 b1) i · i + (a1 b2) i · j + (a1 b3) i · k + (a2 b1) j · i + (a2 b2) j · j
+(a2 b3) j · k + (a3 b1)k · i + (a3 b2)k · j + (a3 b3)k · k

= a1 b1 + a2 b2 + a3 b3,

where we have used i · j = i · k = j · k = 0 and i · i = |i|2 = 1, j · j = |j|2 = 1, and

k · k = |k|2 = 1 in the last step (see Example 9.26). 2

Example 9.30 (scalar product)

If a = (4, 2, 3) and b = (−1, 0, 6), then

a ·b = (4, 2, 3) ·(−1, 0, 6) = 4×(−1)+2×0+3×6 = −4+0+18 = 14. 2

Example 9.31 (scalar product)

Compute the scalar products a ·b and a · c of the vectors a = (2, 2, 0), b = (0, 1, 0),

and c = (−1, 3, 5).

Solution: From (9.13), we have

a · b = (2, 2, 0) · (0, 1, 0) = 2 × 0 + 2 × 1 + 0 × 0 = 0 + 2 + 0 = 2.

a · c = (2, 2, 0) · (−1, 3, 5) = 2 × (−1) + 2 × 3 + 0 × 5 = −2 + 6 + 0 = 4. 2

Remark 9.32 (finding the angle between two vectors)

To find the angle θ between a and b, we can use that, from (9.5) and (9.13),

|a| |b| cos(θ) = a · b = a1 b1 + a2 b2 + a3 b3.

Indeed, if a 6= 0 and b 6= 0, then |a| 6= 0 and |b| 6= 0, and it follows that

cos(θ) =
a · b
|a| |b| =

a1 b1 + a2 b2 + a3 b3

|a| |b| . (9.14)

Now we can determine θ ∈ [0, π] by taking the arccos of (9.14).
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Example 9.33 (determination of the angle between two vectors)

The angle θ between a = (4, 2, 3) and b = (−1, 0, 6) is given by

cos(θ) =
a · b
|a| |b| =

14√
29

√
37

=
14√

29 × 37
≈ 0.42739,

where we have used |a| =
√

29, |b| =
√

37, and a · b = 14 from Examples 9.5

and 9.30. So θ = arccos(14/
√

29 × 37) ≈ 1.1292 radians, that is, θ ≈ 64.698◦. 2

Application 9.34 (a force drags an object horizontally at an angle)

One place where scalar product/dot products are useful is finding the work done.

Suppose a force F drags an object of mass m along a horizontal rough

surface giving rise to a displacement r, and assume that the force acts at an

angle θ to the motion. Think, for example, of using a rope to pull a sledge, where

the angle between the rope and the horizontal ground is θ (see Figure 9.8). Then the

total work done by the force in overcoming friction is

work = horizontal component of force × distance moved = |F| cos(θ)·|r| = F·r.

θ

initial position final position

r

F

Figure 9.8: An object is dragged horizontally by a force acting at an angle θ.

9.4 Vector Product or Cross Product

In this section we discuss the vector product or cross product of two vectors

which gives another vector.
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Definition 9.35 (vector product or cross product)

The vector product or cross product of two non-zero vectors a and b is the

vector a × b whose magnitude/length is

|a × b| = |a| |b| sin(θ), (9.15)

where θ ∈ [0, π] is the angle between a and b, and whose direction is perpen-

dicular to both a and b when taken in the right-handed sense from a

to b. If a = 0 or b = 0, then we define a × b = 0.

What it means that the direction of a × b is ‘perpendicular to both a and b when

taken in the right-handed sense from a to b’ is illustrated in the left picture

in Figure 9.9. Right-handed sense from a to b means that when determining the

direction of a×b, we hold thumb, index finger, and middle finger of the right hand

such that they are perpendicular to each other. If we take a to be the thumb and

b to be the index finger, then the direction of the middle finger gives the direction

of a × b.

θ
π/2 π/2

a
b

a   bx b
|b|

θ

sin(  )θ

a

|a|

π/2

Figure 9.9: On the left, the vector product/cross product a× b is perpendicular to

a and b in the right-handed sense from a to b. On the right, the length |a × b| of

the vector product a × b is the area of the parallelogram.

The length |a × b| of the vector product/cross product has a geometric

interpretation as illustrated in the right picture in Figure 9.9: In (9.15)

|a × b| = |a| |b| sin(θ) = |a|
(
|b| sin(θ)

)
, (9.16)

and the term |b| sin(θ) is the height of the parallelogram with corner points given

by the vectors 0, a, b, and a+ b as indicated in Figure 9.9. Thus (9.16) is the area

of the parallelogram in Figure 9.16.
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Example 9.36 (vector product/cross product)

Let a = (1, 0, 0) and b = (1,−1, 0). Then |a| =
√

12 + 02 + 02 = 1 and |b| =√
12 + (−1)2 + 02 =

√
2. From a · b = 1 × 1 + 0 × (−1) + 0 × 0 = 1, we can

determine the angle θ between a and b as follows (see (9.14))

cos(θ) =
a · b
|a| |b| =

1

1 ×
√

2
=

1√
2

⇒ θ =
π

4
.

Thus the length/magnitude |a × b| of a × b is therefore

|a × b| = |a| |b| sin(θ) = 1 ×
√

2 × sin(π/4) =
√

2 × 1√
2

= 1.

It remains to determine the direction of a×b. From the fact that a and b lie in the

(x, y)-plane and the fact that a×b is perpendicular to a and b in the right-handed

sense from a to b, we can determine that the direction of a × b is −k = (0, 0,−1).

Since |a × b| = 1 and | − k| = 1, we have

a×b = −k = (0, 0,−1). 2

Remark 9.37 (properties of the vector product)

(a) For any two vectors a and b,

a × b = −b × a, (9.17)

which can easily be seen from the fact that the direction of the vector product/cross

product is perpendicular to a and b in the right-handed sense from a to b.

(b) For any vector a 6= 0, we have that a has the angle θ = 0 to itself. Thus we

have |a × a| = |a| |a| sin(0) = 0, and so

a × a = 0. (9.18)

Example 9.38 (vector product of the Cartesian unit vectors)

Since any two different Cartesian unit vectors i, j,k have the angle π/2 to each

other, the vector product/cross product of any two different Cartesian unit vectors

satisfies

|i × j| = |i| |j| sin(π/2) = 1 × 1 × 1 = 1,

|i × k| = |i| |k| sin(π/2) = 1 × 1 × 1 = 1,

|j × k| = |j| |k| sin(π/2) = 1 × 1 × 1 = 1.
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Since i× j is perpendicular to both i and j in the right-handed sense from i to j, we

have that the direction of i× j is k. Since |i× j| = 1 and |k| = 1, we have i× j = k.

Analogously, we can determine all the following vector products

i × j = −j × i = k, j × k = −k × j = i, k × i = −i × k = j.

Furthermore, from (9.18), we have

i × i = j × j = k × k = 0. 2

Definition 9.39 (scalar triple product)

Given three vectors a, b and c, the scalar

a · (b × c)

is called the scalar triple product of a, b and c.

The next lemma states that the scalar triple product is the volume of the paral-

lelepiped spanned by the three vectors. This lemma will be proved on the exercise

sheet for this chapter.

Lemma 9.40 (interpretation of scalar triple product)

We have that for any three vectors a, b and c,

a · (b × c) = b · (c × a) = c · (a × b). (9.19)

If the vectors a, b, and c are not coplanar (that is, if they do not lie all in

one plane), then the scalar triple product is the volume of the parallelepiped

spanned by a, b, and c, as illustrated in Figure 9.10.

a

b

c

Figure 9.10: The volume of the parallelepiped spanned by a, b, and c is the scalar

triple product a · (b × c).
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For the vector/cross product, we have the following distributive law.

Theorem 9.41 (distributive law for vector product)

For any three vectors a, b and c in R3, we have that

a × (b + c) = (a × b) + (a × c) and (b + c) × a = (b × a) + (c × a). (9.20)

Proof of Theorem 9.41: We only need to prove the first equation in (9.20), since

the second equation follows immediately from the first and (9.17). Let

d = a × (b + c) − (a × b) − (a × c),

that is, we have arranged all terms in (9.20) on the left-hand side of (9.20). In order

to prove (9.20), we have to show that d = 0. To do this, we show that |d|2 = d ·d is

zero, and then we know from Remark 9.6 that d = 0. Indeed, using the distributive

law for the scalar product (see Theorem 9.27) gives that

d · d = d ·
[
a × (b + c) − (a × b) − (a × c)

]

= d ·
[
a × (b + c)

]
− d ·

[
a × b

]
− d ·

[
a × c

]
.

Using the property (9.19) of the triple scalar product gives that

d · d = (b + c) · [d × a] − b · [d × a] − c · [d × a].

Using the distributive law for the scalar product (see Theorem 9.27) again gives

d ·d =
[
(b+ c)−b− c

]
· [d× a] = 0 · [d× a] = 0. 2

Remark 9.42 (scalar factors can be pulled out of the vector product)

For any two vectors a and b in R3 and any scalar λ ∈ R,

a × (λb) = (λ a) × b = λ (a × b). (9.21)

Proof: If a = 0, b = 0, or λ = 0, then all three terms in (9.21) are equal to the

zero vector 0 and the statement is true. Now assume that a 6= 0, b 6= 0, and λ 6= 0.

We will show that the term on the left-hand side of (9.21) equals the term on the

right-hand side of (9.21). The proof that the term in the middle of (9.21) equals the

term on the right-hand side of (9.21) is analogous.

Let θ be the angle between a and b. If λ > 0, then the angle between a and λb is

also θ, and hence the magnitude/length of a × (λb) is

|a × (λb)| = |a| |λb| sin(θ) = |a|
(
|λ| |b|

)
sin(θ)
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= |λ|
(
|a| |b| sin(θ)

)
= |λ| |a× b| = |λ (a × b)|. (9.22)

Furthermore, a× (λb) is perpendicular to both a and λb in the right-handed sense

from a to λb, that is, to both a and b in the right-handed sense from a to b. So

a× (λb) points in the same direction as a× b, and hence in the same direction as

λ (a × b). From this and (9.22), it follows that

a × (λb) = λ (a × b).

If λ < 0, then the angle between a and λb is π− θ, and so the length of a× (λb) is

|a × (λb)| = |a| |λb| sin(π − θ) = |a|
(
|λ| |b|

) (
sin(π) cos(θ) − sin(θ) cos(π)

)

= |a| |λ| |b|
(
0 − sin(θ) × (−1)

)

= |λ|
(
|a| |b| sin(θ)

)
= |λ| |a× b| = |λ (a × b)|. (9.23)

Furthermore, a× (λb) is perpendicular to both a and λb in the right-handed sense

from a to λb, that is, perpendicular to both a and b in the left-handed sense from a

to b. So a × (λb) points in the opposite direction to a × b, and hence in the same

direction as λ (a × b). From this and (9.23), it follows that

a × (λb) = λ (a × b).

So we have proved that for any two vectors a and b and any scalar λ ∈ R,

a × (λb) = λ (a × b). 2

The next theorem gives us a very useful representation of the vector product/cross

product a × b in terms of the components of the vectors a and b.

Theorem 9.43 (formula for cross product in terms of components)

Let a = (a1, a2, a3) and b = (b1, b2, b3) be two vectors in R3. Then

a × b = (a2 b3 − a3 b2) i − (a1 b3 − a3 b1) j + (a1 b2 − a2 b1)k

=
(
a2 b3 − a3 b2, −(a1 b3 − a3 b1), a1 b2 − a2 b1

)
. (9.24)

Proof of Theorem 9.43: To prove (9.24), we start by writing the vectors a and b

in terms of the Cartesian unit vectors, that is, a = (a1, a2, a3) = a1 i+a2 j+a3 k and

b = (b1, b2, b3) = b1 i + b2 j + b3 k, and substitute this into the vector product/cross

product a × b. Thus

a × b = (a1 i + a2 j + a3 k) × (b1 i + b2 j + b3 k).



9. Vectors 259

Using the distributive law (9.20) and (9.21) to transform the right-hand side gives

a × b = (a1 i + a2 j + a3 k) × (b1 i + b2 j + b3 k)

= (a1 i) × (b1 i + b2 j + b3 k) + (a2 j) × (b1 i + b2 j + b3 k)

+ (a3 k) × (b1 i + b2 j + b3 k)

= (a1 i) × (b1 i) + (a1 i) × (b2 j) + (a1 i) × (b3 k)

+ (a2 j) × (b1 i) + (a2 j) × (b2 j) + (a2 j) × (b3 k)

+ (a3 k) × (b1 i) + (a3 k) × (b2 j) + (a3 k) × (b3 k)

= (a1 b1) (i × i) + (a1 b2) (i × j) + (a1 b3) (i × k)

+ (a2 b1) (j × i) + (a2 b2) (j × j) + (a2 b3) (j × k)

+ (a3 b1) (k × i) + (a3 b2) (k × j) + (a3 b3) (k × k)

= (a1 b2)k − (a1 b3) j − (a2 b1)k + (a2 b3) i + (a3 b1) j − (a3 b2) i

= (a2 b3 − a3 b2) i − (a1 b3 − a3 b1) j + (a1 b2 − a2 b1)k,

where we have used i× i = j × j = k× k = 0 and

i × j = −j × i = k, j × k = −k × j = i and k × i = −i × k = j

in the last step (see Example 9.38). Note the alternating signs, +, −, +, of the

terms involving i, j and k. 2

Remark 9.44 (alternative representation of (9.24))

In school some of you may have used the formula (9.25) below for the vector product

which also leads to (9.24). This formula uses the notation of the determinant

which we will encounter in the next chapter. If you have not seen the notation

below, do not worry about it for the moment; we will come back to it in the next

chapter.

a × b =

∣∣∣∣∣∣

i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
=

∣∣∣∣
a2 a3

b2 b3

∣∣∣∣ i −
∣∣∣∣

a1 a3

b1 b3

∣∣∣∣ j +

∣∣∣∣
a1 a2

b1 b2

∣∣∣∣k

= (a2 b3 − a3 b2) i − (a1 b3 − a3 b1) j + (a1 b2 − a2 b1)k. (9.25)

Example 9.45 (vector product/cross product)

Compute the vector product/cross product a× b for the following pairs of vectors:

(a) a = (4, 2, 3), b = (−1, 0, 6); (b) a = (1, 2, 1), b = (3, 1, 2).
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Solution: We use (9.24) to compute the cross products:

a × b = (4, 2, 3) × (−1, 0, 6)

=
(
2 × 6 − 3 × 0

)
i −
(
4 × 6 − 3 × (−1)

)
j +
(
4 × 0 − 2 × (−1)

)
k

= 12 i− 27 j + 2k = (12,−27, 2),

and

a × b = (1, 2, 1) × (3, 1, 2)

=
(
2 × 2 − 1 × 1

)
i−
(
1 × 2 − 1 × 3

)
j +
(
1 × 1 − 2 × 3

)
k

= 3 i− (−1) j + (−5)k = 3 i + j − 5k = (3, 1,−5).

Remark 9.46 (unit vectors perpendicular to two non-parallel vectors)

For any two non-zero, non-parallel vectors a and b, the vectors ±(a × b) are non-

zero vectors which are perpendicular to both a and b. So the unit vectors which

are perpendicular to both a and b are

unit vectors perpendicular to a and b = ± a × b

|a × b| .

Example 9.47 (unit vectors perpendicular to two non-parallel vectors)

Find the unit vectors which are perpendicular to both vectors a = (3, 6, 9) and

b = (−2, 3, 1).

Solution: We have that

a × b = (3, 6, 9) × (−2, 3, 1)

=
(
6 × 1 − 9 × 3

)
i −
(
3 × 1 − 9 × (−2)

)
j +
(
3 × 3 − 6 × (−2)

)
k

= −21 i− 21 j + 21k = 21 (−i − j + k) = 21 (−1,−1, 1).

Now we work out the length of a × b

|a × b| = |21 (−1,−1, 1)| = 21|(−1,−1, 1)| = 21
√

(−1)2 + (−1)2 + 12 = 21
√

3,

and hence the unit vectors which are perpendicular to both a and b are

± a × b

|a × b| = ± 21 (−1,−1, 1)

21
√

3
=

±1√
3

(−1,−1, 1). 2

Remark 9.48 (Warning: (a × b) × c 6= a × (b × c))

In general,

(a × b) × c 6= a × (b × c).
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Indeed, the vector on the left-hand side is perpendicular to c and to the vector a×b

(which itself is perpendicular to a and b). The vector on the right-hand side is

perpendicular a and to the vector b × c (which itself is perpendicular to b and c).

Application 9.49 (torque)

If, for example, you use a box spanner to undo a wheel nut, you apply a force F at

some point r. It is assumed that the centre of the nut is at 0. If the angle between

F and r is θ, then the torque is a vector with magnitude

|r| |F| sin(θ) = |r × F|.

The direction of the torque is perpendicular to the plane containing F and r. In

fact, the torque is given by

torque = r × F,

the vector product/cross product of r and F.
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Chapter 10

Matrices

In Section 10.1 we introduce m × n matrices which are rectangular arrays of real

numbers consisting of m rows and n columns. For example,

A =

(
2 1 3

1 3 1

)

is a 2× 3 matrix with two rows and three columns. Vectors which we have encoun-

tered in Chapter 9, are a special case of matrices. In Section 10.2, we learn how

to add and subtract matrices of the same size and how to multiply matrices

with scalars. We also learn how to multiply matrices with each other. In Sec-

tion 10.3, we introduce the determinant of a square matrix, which is a scalar. In

Section 10.4, we learn how to compute the inverse matrix of a matrix with deter-

minant different from zero. Finally we will use matrices and their inverse matrices

to solve linear systems of equations in Section 10.5.

10.1 Introduction

We start by introducing matrices as rectangular arrays of real numbers. In the

previous chapter we have already encountered vectors which are special cases of

matrices.

263
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Definition 10.1 (matrix)

An m × n (read ‘m by n’) matrix A = (ai,j) = (ai,j)
i=1,2,...,m
j=1,2,...,n is a rectangular

array of real numbers containing m rows and n columns

A =




a1,1 a1,2 a1,3 · · · a1,n

a2,1 a2,2 a2,3 · · · a2,n

a3,1 a3,2 a3,3 · · · a3,n

...
...

...
. . .

...

am,1 am,2 am,3 · · · am,n




The entry in the intersection of the ith row and jth column is denoted by ai,j

and is called the (i, j)th entry of the matrix. That is, the first index i of ai,j

denotes the row and the second index j of ai,j denotes the column.

Example 10.2 (matrices)

(a) The matrix

A = (ai,j) =

(
2 3 1 −4

2 1 0 5

)

has m = 2 rows and n = 4 columns, and hence is a 2 × 4 matrix. Here we have

a1,1 = 2, a1,2 = 3, a1,3 = 1, a1,4 = −4, and a2,1 = 2, a2,2 = 1, a2,3 = 0, a2,4 = 5.

(b) The matrix

B = (bi,j) =




1 −2 3

−2 1 4

7 5 9

−3 −4 −8




has m = 4 rows and n = 3 columns, and hence is a 4 × 3 matrix.

(c) The row vector a = (1, 4,−5) has m = 1 rows and n = 3 columns, and hence

is a 1 × 3 matrix.

(d) The column vector

b =




1

2

3




has m = 3 rows and n = 1 columns, and hence is a 3 × 1 matrix. 2
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Definition 10.3 (equal matrices)

Two matrices are said to be equal if they have the same size, that is, the same

numbers of rows and the same number of columns, and if all corresponding

entries are the same. In formulas, an m × n matrix A = (ai,j) and an ℓ × k

matrix B = (bi,j) are equal if m = ℓ and n = k and

ai,j = bi,j for all i = 1, 2, . . . , m and all j = 1, 2, . . . , n.

If two matrices A and B are equal we may write A = B, and if two matrices are

not equal we may write A 6= B.

Example 10.4 (equal and unequal matrices)

(a) Consider the matrices

A =

(
2 3 1 −4

2 1 0 5

)
and B =

(
2 3 1

2 1 0

)
.

The matrix A is a 2 × 4 matrix, and B is an 2 × 3 matrix. Since the matrices have

not the same dimension, we have A 6= B.

(b) Are the matrices

A = (ai,j) =

(
2 3 1 −4

2 1 0 5

)
and B = (bi,j) =

(
2 1 0 5

2 3 1 −4

)

equal? Solution: The matrices A and B are both 2 × 4 matrices, but we have

a1,2 = 3 6= b1,2 = 1. Hence the matrices are not equal, that is, A 6= B.

(c) The matrices

A = (ai,j) =

(
1 2

3 4

)
and B = (bi,j) =

(
1 2

3 4

)

are both 2 × 2 matrices. In addition,

a1,1 = b1,1 = 1, a1,2 = b1,2 = 2, a2,1 = b2,1 = 3, and a2,2 = b2,2 = 4.

Thus the two matrices are equal, that is, A = B. 2

Definition 10.5 A matrix which has the same number of rows and columns is

called square or a square matrix. In formulas, an m × n matrix A = (ai,j) is

square if m = n.
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Example 10.6 (square matrices)

Consider the matrices

A =

(
2 3

2 1

)
and B =

(
2 1 0

2 3 1

)
.

The matrix A is a 2 × 2 matrix and is square. The matric B is a 2 × 3 matrix and

is not square. 2

Definition 10.7 (zero matrix)

The m × n matrix O which has all entries zero

O =




0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0




is called the m × n zero matrix.

10.2 Elementary Matrix Operations

In this section we learn how to multiply a matrix by a scalar and how to add

and subtract matrices. Finally, we learn how to multiply an m× n matrix by

an n × ℓ matrix.

Definition 10.8 (scalar multiplication of a matrix by a scalar)

Let A = (ai,j) be an m×n matrix, and let λ ∈ R be a scalar (real number). Then

the scalar multiplication of A by λ is the m × n matrix

λ A = λ (ai,j) = (λ ai,j) =




λ a1,1 λ a1,2 · · · λ a1,n

λ a2,1 λ a2,2 · · · λ a2,n

...
...

. . .
...

λ am,1 λ am,2 · · · λ am,n


 .

In shorter notation, the (i, j)th entry of λ A is

[λ A]i,j = λ ai,j .

In words, the matrix A is multiplied with the scalar λ by multiplying every

entry of the matrix by λ.



10. Matrices 267

Example 10.9 (multiplication of a matrix by a scalar)

Consider the matrix

A =

(
3 1

2 5

)
.

(a) If λ = 2, then λ A is given by

2 A =

(
2 × 3 2 × 1

2 × 2 2 × 5

)
=

(
6 2

4 10

)
.

(b) If λ = 1, then λ A is given by

1 A =

(
1 × 3 1 × 1

1 × 2 1 × 5

)
=

(
3 1

2 5

)
= A.

(c) If λ = 0, then λ A is given by

0 A =

(
0 × 3 0 × 1

0 × 2 0 × 5

)
=

(
0 0

0 0

)
= O. 2

We can also add and subtract matrices A and B if they have the same size, that

is, the same numbers of rows and columns.

Definition 10.10 (addition of matrices)

Let A = (ai,j) be an m × n matrix, and let B = (bi,j) be also an m × n matrix.

Then the sum A + B is the m × n matrix defined by

A + B = (ai,j + bi,j) =




a1,1 + b1,1 a1,2 + b1,2 · · · a1,n + b1,n

a2,1 + b2,1 a2,2 + b2,2 · · · a2,n + b2,n

...
...

. . .
...

am,1 + bm,1 am,2 + bm,2 · · · am,n + bm,n


 .

In words, to add two m×n matrices A and B, we just add the corresponding

elements of the matrices, that is,

[A + B]i,j = ai,j + bi,j .

Note that we only can add matrices if they have the same size, that is, the same

number of rows and the same number of columns.
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Remark 10.11 (substraction of matrices)

The difference A − B of two m × n matrices A = (ai,j) and B = (bi,j) can now

easily be defined with the help of the scalar multiplication of a matrix with a scalar

and the addition of two matrices by

A − B = A + (−1)B = (ai,j) + (−bi,j) = (ai,j − bi,j),

or equivalently, the (i, j)th entry of A − B is

[A − B]i,j = ai,j − bi,j .

Example 10.12 (addition and subtraction of matrices)

(a) The sum A + B of the two 2 × 3 matrices

A =

(
2 3 1

2 1 0

)
and B =

(
2 2 6

3 1 7

)
,

is given by

A + B =

(
2 3 1

2 1 0

)
+

(
2 2 6

3 1 7

)
=

(
2 + 2 3 + 2 1 + 6

2 + 3 1 + 1 0 + 7

)
=

(
4 5 7

5 2 7

)
.

(b) The difference A − B of the two 2 × 2 matrices

A =

(
1 2

3 4

)
and B =

(
1 1

1 1

)

is given by

A − B =

(
1 2

3 4

)
−
(

1 1

1 1

)
=

(
1 − 1 2 − 1

3 − 1 4 − 1

)
=

(
0 1

2 3

)
,

and the sum A + B is given by

A + B =

(
1 2

3 4

)
+

(
1 1

1 1

)
=

(
1 + 1 2 + 1

3 + 1 4 + 1

)
=

(
2 3

4 5

)
.

(c) Let A be an arbitrary m× n matrix and let O be the m × n zero matrix. Then

A + O = O + A = A.

Indeed

[A+O]i,j = ai,j+0 = [O+A]i,j = 0+ai,j = ai,j for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n.
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(d) If A is a matrix and k is a positive integer, then

A + A + . . . + A︸ ︷︷ ︸
k-times

= k A. 2

Next we learn that we can multiply an m × n matrix A with and n × ℓ matrix B,

and the result will be an m× ℓ matrix. The matrix multiplication AB is rather

more complicated than scalar multiplication or matrix addition, since matrix mul-

tiplication is not performed by multiplying corresponding entries but by taking the

scalar products of rows the matrix A and columns of the matrix B.

Definition 10.13 (multiplication of an m × n by an n × ℓ matrix)

Let A = (ai,j) be an m × n matrix, and let B = (bj,k) be an n × ℓ matrix. Then

the product AB of the m×n matrix A with the n× ℓ matrix B is defined

to be the m × ℓ matrix A = ([AB]i,j) with the entries

(i, j)th entry of AB = [AB]i,j =
n∑

k=1

ai,k bk,j

= scalar product of ith row vector of A and jth column vector of B

=
(
ai,1, ai,2, . . . , ai,n

)
·




a1,j

a2,j

...

an,j


 .

Note that the product AB only exists if the number of columns in the first

matrix A equals the number of rows in the second matrix B.

Note that if A and B are both n × n matrices, then both AB and B A exist but

in general AB and B A are not necessarily equal.

Example 10.14 (matrix multiplication)

The matrices A and B, given by

A =

(
3 1

2 5

)
and B =

( −2 6

4 7

)
.

They are both 2 × 2 matrices, and we can compute both AB and B A. We find

AB =

(
3 1

2 5

)( −2 6

4 7

)
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=

(
3 × (−2) + 1 × 4 3 × 6 + 1 × 7

2 × (−2) + 5 × 4 2 × 6 + 5 × 7

)

=

( −2 25

16 47

)
,

and

B A =

( −2 6

4 7

)(
3 1

2 5

)

=

(
(−2) × 3 + 6 × 2 (−2) × 1 + 6 × 5

4 × 3 + 7 × 2 4 × 1 + 7 × 5

)

=

(
6 28

26 39

)
.

We see that AB 6= B A. 2

Example 10.15 (matrix multiplication)

Consider the two matrices

A = (1 2) and B =




1

2

3


 .

Then AB does not exist, since A is a 1 × 2 matrix and B is a 3 × 1 matrix. The

product B A does exist, since B is a 3 × 1 and A is a 1 × 2 matrix. We find

B A =




1

2

3


 (1 2) =




1 × 1 1 × 2

2 × 1 2 × 2

3 × 1 3 × 2


 =




1 2

2 4

3 6


 . 2

Definition 10.16 (identity matrix)

The n×n identity matrix In is the n×n matrix which has ones on the leading

diagonal and zeros everywhere else, that is,

[In]i,i = 1 for 1 ≤ i ≤ n and [In]i,j = 0 if i 6= j.

Explicitly the identity matrix In is

In =




1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




.
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Example 10.17 (identity matrix)

The 2 × 2 identity matrix and the 3 × 3 identity matrix are given by

I2 =

(
1 0

0 1

)
and I3 =




1 0 0

0 1 0

0 0 1


 ,

respectively. 2

Example 10.18 (multiplication with the identity matrix)

Let the 2 × 2 matrix A be given by

A =

(
3 1

2 5

)
.

Compute the products I2 A and AI2, where I2 is the 2 × 2 identity matrix.

Solution:

I2 A =

(
1 0

0 1

)(
3 1

2 5

)
=

(
1 × 3 + 0 × 2 1 × 1 + 0 × 5

0 × 3 + 1 × 2 0 × 1 + 1 × 5

)
=

(
3 1

2 5

)
,

and

I2 A =

(
3 1

2 5

)(
1 0

0 1

)
=

(
3 × 1 + 1 × 0 3 × 0 + 1 × 1

2 × 1 + 5 × 0 2 × 0 + 5 × 1

)
=

(
3 1

2 5

)
.

We observe that I2 A = AI2 = A. 2

The identity I2 A = AI2 = A which we observed in the last example is true for

every 2× 2 matrix A. Moreover, an analogous property holds for the n×n identity

matrix.

Lemma 10.19 (multiplication by the identity matrix)

Let A be an m×n matrix, let B be a n×ℓ matrix, and let In be the n×n identity

matrix. Then we have

AIn = A and In B = B. (10.1)

In particular, if A is an n×n square matrix, then (10.1) implies AIn = In A = A.

We observe that In plays the role in the multiplication of n × n matrices that the

real number 1 plays in the multiplication of real numbers, that is,

x 1 = 1 x = x for any real number x ∈ R.
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Theorem 10.20 (associative law of matrix multiplication)

Let A be an m × n matrix, B an n × ℓ matrix, and C an ℓ × k matrix. Then

(AB) C = A (B C).

Example 10.21 (associative law of matrix multiplication)

Verify the associative law for the three matrices

A =

(
3 1

2 5

)
, B =

(
1 −1

−1 1

)
, C =

(
1 2

2 1

)
.

Solution: We have have

AB =

(
3 1

2 5

)(
1 −1

−1 1

)
=

(
3 − 1 −3 + 1

2 − 5 −2 + 5

)
=

(
2 −2

−3 3

)

and

(AB) C =

(
2 −2

−3 3

)(
1 2

2 1

)
=

(
2 − 4 4 − 2

−3 + 6 −6 + 3

)
=

( −2 2

3 −3

)
.

On the other hand

B C =

(
1 −1

−1 1

)(
1 2

2 1

)
=

(
1 − 2 2 − 1

−1 + 2 −2 + 1

)
=

( −1 1

1 −1

)

and

A (B C) =

(
3 1

2 5

)( −1 1

1 −1

)
=

( −3 + 1 3 − 1

−2 + 5 2 − 5

)
=

( −2 2

3 −3

)
,

and we find indeed (AB) C = A (B C). 2

Definition 10.22 (k-fold product of a matrix)

For any integer k ∈ N, we denote by Ak the k-fold product of A, that is,

Ak = AA . . . A︸ ︷︷ ︸
k-times

Finally we introduce the transpose of a matrix.
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Definition 10.23 (transpose of a matrix)

The transpose AT of an m × n matrix A is the n × m matrix AT obtained by

interchanging the rows and columns of A. In formulas,

[AT ]i,j = aj,i for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. (10.2)

Example 10.24 (transpose of a matrix)

A =

(
2 3 1

2 1 0

)
and AT =




2 2

3 1

1 0


 .

Remark 10.25 (transpose of transpose gives original matrix)

For any matrix A, we have

(AT )T = A.

Proof: Indeed, if A is an m× n matrix, then AT is an n×m matrix, and so (AT )T

is an m × n matrix. Furthermore, we have from (10.2) that

[
(AT )T

]
i,j

=
[
AT
]
j,i

= ai,j for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n. 2

10.3 The Determinant of a Square Matrix

The determinant associates a scalar with a matrix and can only be defined for

square matrices. We will start by discussing the determinant for the special cases

of 2 × 2 matrices and 3 × 3 matrices. After that we will define the determinant

recursively for n× n matrices. We will learn several properties of determinants

that can be used to simplify the computation of determinants.

Definition 10.26 (determinant of 2 × 2 matrix)

The determinant det(A) of a 2 × 2 matrix

A =

(
a b

c d

)

is defined by

det(A) =

∣∣∣∣
a b

c d

∣∣∣∣ = a d − b c. (10.3)



274 10. Matrices

Example 10.27 (determinants of 2 × 2 matrices)

Compute the determinants of the 2 × 2 matrices

A =

(
1 3

2 4

)
and B =

(
2 5

4 10

)
.

Solution: From (10.3), we have that

det(A) =

∣∣∣∣
1 3

2 4

∣∣∣∣ = 1 × 4 − 3 × 2 = 4 − 6 = −2,

det(B) =

∣∣∣∣
2 5

4 10

∣∣∣∣ = 2 × 10 − 5 × 4 = 20 − 20 = 0. 2

Definition 10.28 (determinant of a 3 × 3 matrix)

The determinant of a 3 × 3 matrix

A =




a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3





is defined by

det(A) =

∣∣∣∣∣∣

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

∣∣∣∣∣∣
= a1,1 C1,1 − a1,2 C1,2 + a1,3 C1,3, (10.4)

where C1,1, −C1,2, and C1,3 are the so-called cofactors of a1,1, a1,2, and a1,3,

respectively, and are defined by

C1,1 =

∣∣∣∣
a2,2 a2,3

a3,2 a3,3

∣∣∣∣ , C1,2 =

∣∣∣∣
a2,1 a2,3

a3,1 a3,3

∣∣∣∣ , and C1,3 =

∣∣∣∣
a2,1 a2,2

a3,1 a3,2

∣∣∣∣ .

We observe that C1,j is the determinant of the 2×2 submatrix of A that is obtained

by deleting the 1st row and jth column of A.

Example 10.29 (determinant of a 3 × 3 matrix)

Find the determinant of the matrix

A =




1 0 1

0 1 0

2 0 0


 .
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Solution: We apply formula (10.4) to compute the determinant:

det(A) =

∣∣∣∣∣∣

1 0 1

0 1 0

2 0 0

∣∣∣∣∣∣
= 1 ×

∣∣∣∣
1 0

0 0

∣∣∣∣− 0 ×
∣∣∣∣

0 0

2 0

∣∣∣∣+ 1 ×
∣∣∣∣

0 1

2 0

∣∣∣∣

= 1 × (1 × 0 − 0 × 0) − 0 + 1 × (0 × 0 − 1 × 2)

= 1 × 0 + 1 × (−2) = −2. 2

Example 10.30 (determinant of a 3 × 3 matrix)

Determine the determinant of the 3 × 3 matrix

A =




1 2 3

4 6 5

9 8 7


 .

Solution: We have from (10.4) that

det(A) =

∣∣∣∣∣∣

1 2 3

4 6 5

9 8 7

∣∣∣∣∣∣
= 1 ×

∣∣∣∣
6 5

8 7

∣∣∣∣− 2 ×
∣∣∣∣

4 5

9 7

∣∣∣∣+ 3 ×
∣∣∣∣

4 6

9 8

∣∣∣∣

= (6 × 7 − 5 × 8) − 2 × (4 × 7 − 5 × 9) + 3 × (4 × 8 − 6 × 9)

= (42 − 40) − 2 × (28 − 45) + 3 × (32 − 54)

= 2 − 2 × (−17) + 3 × (−22) = 2 + 34 − 66 = −30. 2

Remark 10.31 (use 3 × 3 matrix to determine the vector product)

In Remark 9.44 we mentioned the following formula for the vector product

a × b = (a1, a2, a3) × (b1, b2, b3)

=

∣∣∣∣∣∣

i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
=

∣∣∣∣
a2 a3

b2 b3

∣∣∣∣ i −
∣∣∣∣

a1 a3

b1 b3

∣∣∣∣ j +

∣∣∣∣
a1 a2

b1 b2

∣∣∣∣k

= (a2 b3 − a3 b2) i − (a1 b3 − a3 b1) j + (a1 b2 − a2 b1)k,

which we can now understand with our knowledge of the determinant notation.

Now we learn the formula for the determinant of an n × n matrix. This formula is

a generalization of the formula (10.4) for the determinant of a 3 × 3 matrix.
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Definition 10.32 (determinant of an n × n matrix)

Let A = (ai,j) be an n×n matrix whose entry in ith row and jth column is denoted

by ai,j . Then the determinant of the n × n matrix A is given by

det(A) =
n∑

j=1

ai,j (−1)i+j Ci,j , (10.5)

for any i ∈ {1, 2, . . . , n}, where Ci,j is the determinant of the (n−1)×(n−1) ma-

trix obtained by deleting the ith row and jth column from A. The term (−1)i+j Ci,j

is called the cofactor of ai,j.

Remark 10.33 (comments on the determinant)

(a) The notion ‘for any i ∈ {1, 2, . . . , n}’ in Definition 10.32 implies that for any

choice of i the value of the determinant det(A) is the same.

(b) In the above definition, we have ‘expanded about the ith row’. We can also

‘expand about the jth column’. Indeed, the determinant of A is also given by

det(A) =
n∑

i=1

ai,j (−1)i+j Ci,j, (10.6)

for any j ∈ {1, 2, . . . , n}.
(c) For a 3 × 3 matrix

A =




a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3



 ,

expanding about the first row (that is, taking i = 1 in Definition 10.32) gives

that the determinant of A is

det(A) =
3∑

j=1

a1,j (−1)1+j C1,j

= a1,1 (−1)1+1 C1,1 + a1,2 (−1)1+2 C1,2 + a1,3 (−1)1+3 C1,3

= a1,1 C1,1 − a1,2 C1,2 + a1,3 C1,3,

where

C1,1 =

∣∣∣∣
a22 a23

a32 a33

∣∣∣∣ , C1,2 =

∣∣∣∣
a21 a23

a31 a33

∣∣∣∣ , and C1,3 =

∣∣∣∣
a21 a22

a31 a32

∣∣∣∣ .

This is the formula (10.4) given in Definition 10.28, and we see that Definition

10.28 is just a special case of Definition 10.32.
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We now come back to the matrix from Example 10.30, and we compute its deter-

minant in two different ways.

Example 10.34 (determinant of 3 × 3 matrix)

Consider again the matrix A from Example 10.30, given by

A =




1 2 3

4 6 5

9 8 7


 .

(a) Expanding about the second row (that is, taking (10.5) with i = 2) gives that

the determinant of A is

det(A) =
3∑

j=1

a2,j (−1)2+j C2,j

= a2,1 (−1)2+1 C2,1 + a2,2 (−1)2+2 C2,2 + a2,3 (−1)2+3 C2,3

= −a2,1 C2,1 + a2,2 C2 2 − a2,3 C2,3

= −4 C2,1 + 6 C2,2 − 5 C2,3,

where

C2,1 =

∣∣∣∣
2 3

8 7

∣∣∣∣ = 14 − 24 = −10,

C2,2 =

∣∣∣∣
1 3

9 7

∣∣∣∣ = 7 − 27 = −20,

C2,3 =

∣∣∣∣
1 2

9 8

∣∣∣∣ = 8 − 18 = −10.

Hence

det(A) = −4 C2,1 + 6 C2,2 − 5 C2,3

= −4 × (−10) + 6 × (−20) − 5 × (−10)

= 40 − 120 + 50 = −30,

agreeing with the answer we obtained previously in Example 10.30.

(b) Expanding about the first column (that is, taking (10.6) with j = 1) gives that

the determinant of A is

det(A) =
3∑

i=1

ai,1 (−1)i+1 Ci,1
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= a1,1 (−1)1+1 C1,1 + a2,1 (−1)2+1 C2,1 + a3,1 (−1)3+1 C3,1

= a1,1 C11 − a2,1 C2,1 + a3,1 C3,1

= C1,1 − 4 C2,1 + 9 C3,1,

where

C1,1 =

∣∣∣∣
6 5

8 7

∣∣∣∣ = 42 − 40 = 2,

C2,1 =

∣∣∣∣
2 3

8 7

∣∣∣∣ = 14 − 24 = −10,

C3,1 =

∣∣∣∣
2 3

6 5

∣∣∣∣ = 10 − 18 = −8.

Hence

det(A) = C1,1 − 4 C2,1 + 9 C3,1 = 2 − 4 × (−10) + 9 × (−8) = 2 + 40 − 72 = −30,

again agreeing with the answer we obtained previously in Example 10.30. 2

In the next lemma we get information about how the determinant changes if we

perform certain operations on the matrix, such as interchanging rows (or columns)

of the matrix, multiplying a row (or column) with a scalar, or even adding a multiple

of one row (or column) to another row (or column). Such operations can be used

to modify the the matrix (whose determinant we want to compute) and thus may

allow a much easier computation of the determinant of the modified matrix.

Lemma 10.35 (properties of the determinant)

We can use the following properties of the determinant when finding the

determinant of an n × n matrix:

(i) multiplying all the elements of a single row or column of a ma-

trix by a real number λ results in the determinant of the matrix being

multiplied by λ;

(ii) interchanging any two rows or any two columns of a matrix changes

the sign of the determinant of the matrix;

(iii) adding a multiple of one row (or column) of a matrix to another

row (or column) does not change the determinant of the matrix;

(iv) if any row or column of a matrix consists entirely of zeros, then the

determinant of the matrix is zero;

(v) if any two rows or any two columns of a matrix are the same, then

the determinant of the matrix is zero.
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Example 10.36 (determinant of a 4 × 4 matrix)

Find the determinant of the matrix

A =




4 3 0 1

9 7 2 3

4 0 2 1

3 −1 4 0


 .

Solution: Rule (i) allows us to take out the common factor 2 from column 3:

det(A) = 2 ×

∣∣∣∣∣∣∣∣∣

4 3 0 1

9 7 1 3

4 0 1 1

3 −1 2 0

∣∣∣∣∣∣∣∣∣

.

Next, we use rule (ii) to interchange columns 1 and 4 to make the entry in the top

left corner 1:

det(A) = 2 × (−1) ×

∣∣∣∣∣∣∣∣∣

1 3 0 4

3 7 1 9

1 0 1 4

0 −1 2 3

∣∣∣∣∣∣∣∣∣

.

We now apply rule (iii) twice. Firstly, we subtract three times row 1 from row 2

(that is, rnew
2 = r2 − 3 r1):

det(A) = −2 ×

∣∣∣∣∣∣∣∣∣

1 3 0 4

0 −2 1 −3

1 0 1 4

0 −1 2 3

∣∣∣∣∣∣∣∣∣

.

Now, we subtract row 1 from row 3 (that is, rnew
3 = r3 − r1):

det(A) = −2 ×

∣∣∣∣∣∣∣∣∣

1 3 0 4

0 −2 1 −3

0 −3 1 0

0 −1 2 3

∣∣∣∣∣∣∣∣∣

.

Now, we have only one non-zero entry in the column 1, namely, the number 1 at

the top. Expanding about column 1 gives that

det(A) = −2 × 1 ×

∣∣∣∣∣∣

−2 1 −3

−3 1 0

−1 2 3

∣∣∣∣∣∣
.
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So we have reduced the problem to that of finding the determinant of a 3×3 matrix.

We now apply the same procedure to find this determinant. Indeed, rule (i) allows

us to take out the common factors −1 and 3 from columns 1 and 3, respectively:

det(A) = −2 × (−1) × 3 ×

∣∣∣∣∣∣

2 1 −1

3 1 0

1 2 1

∣∣∣∣∣∣
= 6 ×

∣∣∣∣∣∣

2 1 −1

3 1 0

1 2 1

∣∣∣∣∣∣
.

Next, we use rule (ii) to interchange columns 1 and 2 to make the entry in the top

left corner 1:

det(A) = 6 × (−1) ×

∣∣∣∣∣∣

1 2 −1

1 3 0

2 1 1

∣∣∣∣∣∣
.

We now apply rule (iii) twice. Subtracting row 1 from row 2 (that is, rnew
2 = r2−r1)

and subtracting twice row 1 from row 3 (that is, rnew
3 = r3 − 2r1) gives that

det(A) = −6 ×

∣∣∣∣∣∣

1 2 −1

0 1 1

0 −3 3

∣∣∣∣∣∣
.

Now, we have only one non-zero entry in the column 1, namely, the number 1 at

the top. Expanding about column 1 gives that

det(A) = −6 ×
∣∣∣∣

1 1

−3 3

∣∣∣∣ .

Rule (i) allows us to take out the common factor 3 from row 2:

det(A) = −18 ×
∣∣∣∣

1 1

−1 1

∣∣∣∣ .

Hence

det(A) = −18×[1×1−1×(−1)] = −18×[1+1] = −18×2 = −36. 2

Example 10.37 (determinant of the identity matrix)

The n × n identity matrix In has determinant

det(In) = 1. (10.7)

Proof: Let us start with the 2 × 2 matrix I2. We have

det(I2) =

∣∣∣∣
1 0

0 1

∣∣∣∣ = 1 × 1 − 0 × 0 = 1. (10.8)
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For the 3×3 identity matrix I3, we find by expanding the determinant det(I3) about

the first row

det(I3) =

∣∣∣∣∣∣

1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣
= 1 ×

∣∣∣∣
1 0

0 1

∣∣∣∣ = 1 × det(I2) = 1 × 1 = 1,

where we have used (10.8) in the second last step.

Now we use induction and assume that we have already verified that det(In−1) = 1.

Then we want to show that det(In) = 1. By expanding the determinant det(In) of

the n × n identity matrix In about the first row, we find (in analogy to above)

det(In) = 1 × det(In−1) = 1 × 1 = 1,

where have used the assumption that det(In−1) = 1 in the second last step. 2

The next lemma gives information about the relation between the determinant

det(AB) of the product AB of two square matrices A and B and the determi-

nants of the individual matrices det(A) and det(B).

Lemma 10.38 (determinant of the product of matrices)

If A and B are n × n matrices, then the n × n matrix AB has the determinant

det(AB) = det(A) × det(B) = det(A) det(B). (10.9)

Note that, in general, for two n × n matrices

det(A + B) 6= det(A) + det(B).

Example 10.39 (determinant of product of matrices)

Determine the determinant det(AB) where

A =




1 1 1

0 1 1

0 0 1


 and B =




1 0 0

2 2 0

3 3 3


 .

Solution: We will determine the determinant in two ways: (a) by using (10.9); and

(b) by computing AB first and then computing the determinant of AB.
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(a) We have, from expanding det(A) about the first column and from expanding

det(B) about the first row,

det(A) =

∣∣∣∣∣∣

1 1 1

0 1 1

0 0 1

∣∣∣∣∣∣
= 1 ×

∣∣∣∣
1 1

0 1

∣∣∣∣ = 1 × (1 × 1 − 1 × 0) = 1,

det(B) =

∣∣∣∣∣∣

1 0 0

2 2 0

3 3 3

∣∣∣∣∣∣
= 1 ×

∣∣∣∣
2 0

3 3

∣∣∣∣ = 1 × (2 × 3 − 0 × 3) = 6.

From (10.9), we find

det(AB) = det(A) × det(B) = 1 × 6 = 6.

(b) Computing the matrix AB yields

AB =




1 1 1

0 1 1

0 0 1






1 0 0

2 2 0

3 3 3


 =




6 5 3

5 5 3

3 3 3


 .

To compute the determinant det(AB), we use that, from Lemma 10.35 (iii), we

may subtract the second row of the matrix from the first row without changing the

value of the determinant (that is, rnew
1 = r1 − r2). Thus

det(AB) =

∣∣∣∣∣∣

6 5 3

5 5 3

3 3 3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

6 − 5 5 − 5 3 − 3

5 5 3

3 3 3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 0 0

5 5 3

3 3 3

∣∣∣∣∣∣
.

Now we expand about the first row and get

det(AB) =

∣∣∣∣∣∣

1 0 0

5 5 3

3 3 3

∣∣∣∣∣∣
= 1 ×

∣∣∣∣
5 3

3 3

∣∣∣∣ = 1 × (5 × 3 − 3 × 3) = 15 − 9 = 6.

We get indeed the same result. 2

10.4 Invertible Matrices

In this section, we introduce the inverse matrix of an (invertible) square n × n

matrix A. The inverse matrix A−1 of A satisfies AA−1 = A−1 A = In. If we compare
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invertible matrices A to real numbers x 6= 0, then the inverse matrix A−1 corresponds

to the number 1/x. We learn that a matrix A has an inverse matrix if and only

if det(A) 6= 0. We introduce the adjoint matrix, and we learn a formula for the

inverse matrix which involves the adjoint matrix and the determinant.

Definition 10.40 (invertible and inverse matrix)

Let A be an n × n matrix. If there exists an n × n matrix B such that

AB = In and B A = In, (10.10)

then A is invertible. The matrix B satisfying (10.10) is called the inverse

(matrix) of A, and usually the inverse matrix of A is denoted by A−1.

In Definition 10.40 we would prefer that, if there exists a matrix B satisfying (10.10),

then this matrix is the only matrix satisfying (10.10). In other words, we would

like the inverse matrix to be unique. To show that this is indeed true, assume that

there exits another n × n matrix C satisfying

AC = In and C A = In. (10.11)

Multiplying the first formula in (10.11) from the left by the matrix B yields

B (AC) = B In ⇒ (B A) C = B ⇒ In C = B ⇒ C = B,

where we have used the associative law of matrix multiplication (see Theorem 10.20)

and (10.1). Since C = B, we see that the inverse matrix is indeed uniquely deter-

mined.

Example 10.41 (matrix and its inverse)

Consider the matrices A and B, given by

A =

(
2 3

3 4

)
and B =

( −4 3

3 −2

)
.

Show that the matrix B is the inverse matrix to the matrix A.

Solution: We compute AB and B A, and find

AB =

(
2 3

3 4

)( −4 3

3 −2

)

=

(
2 × (−4) + 3 × 3 2 × 3 + 3 × (−2)

3 × (−4) + 4 × 3 3 × 3 + 4 × (−2)

)



284 10. Matrices

=

(
1 0

0 1

)
,

B A =

( −4 3

3 −2

)(
2 3

3 4

)

=

(
(−4) × 2 + 3 × 3 (−4) × 3 + 3 × 4

3 × 2 + (−2) × 3 3 × 3 + (−2) × 4

)

=

(
1 0

0 1

)
.

Since AB = B A = I2, we know that B is the inverse matrix to A. We also see that

A is the inverse matrix of B. 2

Remark 10.42 (not every matrix is invertible)

It is easy to see that the zero matrix

O =

(
0 0

0 0

)

does not have an inverse and is thus not invertible. Indeed, if B is any other 2 × 2

matrix, then

OB =

(
0 0

0 0

)
B =

(
0 0

0 0

)
and B O = B

(
0 0

0 0

)
=

(
0 0

0 0

)
.

We see that not every square matrix is invertible.

If an n×n matrix A has an inverse A−1, then taking the determinant on both sides

of the equation

In = A−1 A

and using (10.9) yields

det(In) = det(A−1 A) = det(A−1) det(A).

From (10.7), we know that det(In) = 1, and thus

1 = det(A−1) det(A). (10.12)

From (10.12), we know that neither det(A) nor det(A−1) can be zero, since zero

multiplied with any other numbers is always zero. Thus we know that any matrix
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which has an inverse matrix satisfies det(A) 6= 0. If A has in inverse matrix

then we have from (10.12) that

det(A−1) =
1

det(A)
. (10.13)

In fact, for any square matrix A, the condition det(A) 6= 0 guarantees that A has

an inverse matrix.

Theorem 10.43 (criterion for having an inverse matrix)

A square matrix A is invertible, and thus has an inverse matrix, if and only

if its determinant det(A) is non-zero, that is,

det(A) 6= 0.

Now that we have a criterion for checking whether a matrix is invertible, that is,

has an inverse, it remains to learn how to compute the inverse matrix. This

leads to the definition and the theorem below.

Definition 10.44 (adjoint matrix)

The adjoint of an n × n square matrix A is that n × n square matrix adj(A)

whose entry in the ith row and jth column is the cofactor (−1)j+i Cj,i of

aj,i (note the changing order of the subscripts!). In formulas,

[adj(A)]i,j = (−1)j+i Cj,i for 1 ≤ i, j ≤ n.

With the help of the adjoint matrix, we can now easily give a formula for the inverse

matrix of a square matrix.

Theorem 10.45 (formula for inverse matrix)

Suppose that A is an n × n square matrix with det(A) 6= 0. Then A is invertible

and the inverse matrix A−1 of A is given by

A−1 =
1

det(A)
adj(A).

Example 10.46 (special case: inverse of a 2 × 2 matrix)

Suppose that we have a 2 × 2 matrix

A =

(
a b

c d

)
.
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Then det(A) = a d − b c. The matrix of cofactors of A is

(
d −c

−b a

)
.

So the adjoint of A is

adj(A) =

(
d −c

−b a

)T

=

(
d −b

−c a

)
.

So if a d 6= b c, then the inverse matrix A−1 of A is

(
a b

c d

)−1

= A−1 =
1

det(A)
adj(A) =

1

a d − b c

(
d −b

−c a

)
. (10.14)

The formula (10.14) for the inverse of a 2 × 2 matrix with det(A) = a d − b c 6= 0 is

easy to remember and worth knowing from memory. 2

Example 10.47 (inverse of a 2 × 2 matrix)

We use the formula (10.14) to determine the inverse of the matrix

A =

(
2 3

3 4

)

from Example 10.41. The determinant is det(A) = 2 × 4 − 3 × 3 = 8 − 9 = −1.

Thus from (10.14)

A−1 =
1

(−1)

(
4 −3

−3 2

)
=

( −4 3

3 −2

)
,

and we have the matrix B from Example 10.41. 2

Example 10.48 (inverse of a 2 × 2 matrix)

Determine whether the 2 × 2

A =

(
3 2

5 3

)

is invertible, and if yes find its inverse matrix A−1.

Solution: Since det(A) = 3×3−2×5 = 9−10 = −1 6= 0, we know that the matrix

A is invertible. From (10.14), its inverse is given by

A−1 =
1

(−1)

(
3 −2

−5 3

)
=

( −3 2

5 −3

)
. 2
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Example 10.49 Determine whether the matrix

A =




2 1 −3

3 1 0

1 2 3


 .

is invertible, and if yes, find its inverse matrix.

Solution: From the computations in Example 10.36, we can deduce that this matrix

has the determinant

det(A) = −18.

Thus A is invertible. Furthermore, the matrix (Ci,j) of cofactors of A is

(Ci,j) =




1 × 3 − 0 × 2 −(3 × 3 − 0 × 1) 3 × 2 − 1 × 1

−(1 × 3 − (−3) × 2) 2 × 3 − (−3) × 1 −(2 × 2 − 1 × 1)

1 × 0 − (−3) × 1 −(2 × 0 − (−3) × 3) 2 × 1 − 1 × 3





=




3 −9 5

−9 9 −3

3 −9 −1



 .

Hence

adj(A) =




3 −9 5

−9 9 −3

3 −9 −1




T

=




3 −9 3

−9 9 −9

5 −3 −1



 .

It follows that

A−1 =
1

det(A)
adj(A) = − 1

18




3 −9 3

−9 9 −9

5 −3 −1



 =
1

18




−3 9 −3

9 −9 9

−5 3 1



 . 2

10.5 Solving Linear Systems of Equations

Finally we show how we can use inverse matrices to solve linear systems of equa-

tions. We will explain the idea first and then we apply it in two examples.

Let us start by looking at an example of a linear system of 2 equations in 2 unknowns.

1 x + 2 y = 5,

3 x + 4 y = 6.
(10.15)
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We can rewrite this linear system in the form

Ax = b

with the 2 × 2 matrix

A =

(
1 2

3 4

)

and the vectors

x =

(
x

y

)
and b =

(
5

6

)
.

That is, (10.15) is equivalent to the linear system in matrix form

(
1 2

3 4

)(
x

y

)
=

(
5

6

)
.

After this motivation we will think from now on of square linear systems with n

equations and n unknowns as an expression of the form

Ax = b, (10.16)

where A is an n×n matrix, and b is a given n×1 matrix (an n-vector in Rn) and x

is an n×1 matrix (an n-vector in Rn) that contains the unknowns. Without further

information about A and b, we cannot know whether an x exists that satisfies

(10.16) and if such an x exists whether it is unique.

However, if det(A) 6= 0, then there exists a uniquely determined n-vector x

that satisfies (10.16). ‘Uniquely determined’ means that x is the only vector that

satisfies (10.16). Now we explain how we can use the inverse matrix A−1 of A to

solve (10.16) if det(A) 6= 0.

If det(A) 6= 0, then A is invertible and has an inverse matrix A−1 (see Theorem

10.43). We multiply (10.16) from the left with the inverse matrix A−1 and obtain

A−1 (Ax) = A−1 b. (10.17)

Using the associative law of matrix multiplication (see Theorem 10.20) and A−1 A =

In and In x = x (from (10.1)), we then transform the left-hand side

A−1 (Ax) = (A−1 A)x = In x = x. (10.18)

Combing (10.17) and (10.18) yields that the solution x of (10.16) is given by

x = A−1 b. (10.19)
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If it is not too demanding to determine the inverse matrix A−1, then (10.19) provides

an easy way for computing the solution x of (10.16).

We illustrate this for two examples.

Example 10.50 (solve linear system of equations)

Solve the linear system of equations

3 x + 2 y = 4,

5 x + 3 y = 7.

Solution: We start by writing the linear system of equations in matrix form as

(
3 2

5 3

)(
x

y

)
=

(
4

7

)
.

Hence Ax = b, with

A =

(
3 2

5 3

)
, x =

(
x

y

)
and b =

(
4

7

)
.

Since det(A) = 3 × 3 − 2 × 5 = 9 − 10 = −1 6= 0, the matrix A is invertible. Its

inverse matrix A−1 exists and is given by (use (10.14))

A−1 =
1

(−1)

(
3 −2

−5 3

)
=

( −3 2

5 −3

)
.

Thus we know from (10.19) that x is given by x = A−1 b, that is,

(
x

y

)
= A−1 b =

( −3 2

5 −3

)(
4

7

)
=

(
(−3) × 4 + 2 × 7

5 × 4 + (−3) × 7

)
=

(
2

−1

)
.

Thus x = 2 and y = −1. Indeed, testing of the solution shows

3 x+2 y = 3×2+2×(−1) = 6−2 = 4 and 5 x+3 y = 5×2+3×(−1) = 10−3 = 7,

as required. 2

Example 10.51 (solve linear system of equations)

Solve the linear system of equations

2 x + y − 3 z = 3,

3 x + y = 0,

x + 2 y + 3 z = −3.
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Solution: We start by writing the linear system of equations in matrix form




2 1 −3

3 1 0

1 2 3






x

y

z


 =




3

0

−3


 .

Hence Ax = b, with

A =




2 1 −3

3 1 0

1 2 3


 , x =




x

y

z


 and b =




3

0

−3


 .

From Example 10.49, A−1 exists and is given by

A−1 = − 1

18




3 −9 3

−9 9 −9

5 −3 −1


 .

So from (10.19), we have

x =




x

y

z


 = A−1 b = − 1

18




3 −9 3

−9 9 −9

5 −3 −1






3

0

−3




= − 1

18




3 × 3 + (−9) × 0 + 3 × (−3)

(−9) × 3 + 9 × 0 + (−9) × (−3)

5 × 3 + (−3) × 0 + (−1) × (−3)





= − 1

18




0

0

18



 =




0

0

−1



 ,

that is, x = 0, y = 0 and z = −1. Testing of the solution by substituting back into

the equations shows that indeed

2 x + y − 3 z = 2 × 0 + 0 − 3 × (−1) = 3,

3 x + y = 3 × 0 + 0 = 0,

x + 2 y + 3 z = 0 + 2 × 0 + 3 × (−1) = −3,

as required. 2
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