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Ex. 1.1: Flipping a Coin Twice

For the example of flipping a perfect coin twice with the random variable
X (e) = number of heads, determine the probability density and probability
distribution.

Solution:

random variable: X (e) = number of heads, with values in {0, 1, 2}
If we set e1 = HH, e2 = HT , e3 = TH, e4 = TT , H = heads,
T = tails, then X (e1) = 2, X (e2) = X (e3) = 1 and X (e4) = 0

For a perfect coin, the probability density f : {0, 1, 2} → R is

f (0) = P(X = 0) =
1

4
,

f (1) = P(X = 1) =
1

2
,

f (2) = P(X = 2) =
1

4
.
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Ex. 1.1: Flipping a Coin Twice

The probability distribution is

F (x) = P(X ≤ x) =
3∑

k=1,
k≤x

f (k),

and we find

F (0) = f (0) =
1

4
,

F (1) = f (0) + f (1) =
1

4
+

1

2
=

3

4
,

F (2) = f (0) + f (1) = f (2) =
1

4
+

1

2
+

1

4
= 1.
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Ex. 1.2: Flipping a Coin Twice

Compute the expectation value and the variance of the random variable
X = number of heads in the probability experiment of flipping a perfect
coin twice.

Solution: The expectation value and the variance are

E(X ) = x1 · f (x1) + x2 · f (x2) + x3 · f (x3)

= 0 · 1
4 + 1 · 1

2 + 2 · 1
4 = 1,

Var(X ) = E(X 2)−
[
E(X )

]2
= x2

1 · f (x1) + x2
2 · f (x2) + x2

3 · f (x3)−
[
E(X )

]2
= 02 · 1

4 + 12 · 1
2 + 22 · 1

4 − 12 = 0 + 1
2 + 1− 1 = 1

2 .
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Ex. 1.3: Random Variable Income

If the yearly gross income X is normally distributed with mean µ = 40 and
standard deviation σ = 10, then the probability density is

fn(x ; 40, 10) =
1

10
√

2π
exp

(
− 1

2

[
x − 40

10

]2
)

and µ = E(X ) = 40 and Var(X ) = σ2 = 100. Use

Fn(x ;µ, σ) = FN

(
X − µ

σ

)
= FN(z),

where FN(z) = Fn(z ; 0, 1), and the table for the standard normal
distribution FN to determine the probability that a person has a yearly
gross income between 50,000 and 60,000 Euros.

Solution: The probability that a person has a yearly gross income between
50,000 and 60,000 Euros is given by

P(50 ≤ X ≤ 60) = P(X ≤ 60)−P(x < 50) = Fn(60; 40, 10)−Fn(50; 40, 10).
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Ex. 1.3: Random Variable Income

We standardize our random variable X = yearly gross income and find the
corresponding values for x1 = 50 and x2 = 60, which yields from

Z =
X − E(X )

σ
=

X − 40

10

the values

z1 =
x1 − 40

10
=

50− 40

10
= 1, z2 =

x2 − 40

10
=

60− 40

10
= 2.

The normal distribution Fn(x ;µ, σ) is related to the standard normal
distribution FN(z) = Fn(z ; 0, 1) via

Fn(x ;µ, σ) = FN

(
X − µ

σ

)
= FN(z).

Thus we find with this formula from any table of the normal distribution:

Fn(50; 40, 10) = FN(1) = 0.8413,

Fn(60; 40, 10) = FN(2) = 0.9772.
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Ex. 1.3: Random Variable Income

Hence

P(50 ≤ X ≤ 60) = Fn(60; 40, 10)− Fn(50; 40, 10) = 0.1359.

The probability that the yearly gross income is between 50,000 and 60,000
Euros bis 0.1359.
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Ex. 1.4: Standardization

Use the formula

E(Z ) = a ·E(X )+b and Var(Z ) = a2 ·Var(X ) for Z = a ·X +b (1)

to verify that Z = (X − µ)/σ with µ = E(X ) and σ2 = Var(X ) does
satisfy E(Z ) = 0 and Var(Z ) = 1.

Solution: For

Z =
X − µ

σ
=

1

σ
· X − µ

σ

we find, from (1) with a = 1
σ and b = −µ

σ ,

E(Z ) =
1

σ
· E(X )− µ

σ
=

E(X )− µ

σ
= 0 as µ = E(X ),

and

Var(Z ) =

(
1

σ

)2

· Var(X ) =
Var(X )

σ2
= 1 as σ2 = Var(X ).
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Ex. 1.5: Flipping a Coin Twice

Consider a perfect coin, and let
X = first flip of the coin,
Y = second flip of the coin,
with the possible events (for both X and Y ): 1 = heads, 0 = tails.

Let the joint probability density be given by f (x , y) = 1/4.

Do you expect that the result of the first flip of the coin has any influence
on the result of the second flip of the coin and vice versa?

What do you conclude about the covariance Cov(X ,Y ) of X and Y ?

Compute the covariance Cov(X ,Y ) of X and Y .

Solution: We expect that the result X of the first flip of the coin has no
effect on the result Y of the second flip of the coin and vice versa.

Hence we expect that X and Y are uncorrelated , i.e. Cov(X ,Y ) = 0.
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Ex. 1.5: Flipping a Coin Twice

Let us consider why the probability density f (x , y) = 1/4 makes sense:

For a perfect coin, we expect that heads and tails turn up with the
same probability 1/2.

Thus for each (i.e. first or second) flip of the coin considered
independently we expect the probability densities fX (x) = 1/2 and
fY (y) = 1/2.

As we assume that the flips of the coin are uncorrelated, we expect

f (x , y) = fX (x) · fY (y) =
1

2
· 1
2

=
1

4
.

To compute Cov(X ,Y ), we need the expectation values E(X ) and E(Y ):
As 1 = heads and 0 = tails, we have:

E(X ) =
1∑

i=0

1∑
j=0

i · f (i , j)︸ ︷︷ ︸
=1/4

=
1

4

1∑
i=0

1∑
j=0

i︸︷︷︸
=2·i

=
1

2

2∑
i=0

i︸︷︷︸
=1

=
1

2
,
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Ex. 1.5: Flipping a Coin Twice

E(Y ) =
1∑

i=0

1∑
j=0

j · f (i , j)︸ ︷︷ ︸
=1/4

=
1

4

1∑
i=0

1∑
j=0

j︸︷︷︸
=1

=
1

4

1∑
i=0

1︸ ︷︷ ︸
=2

=
1

4
· 2 =

1

2
.

We note that E(X ) = E(Y ) = 1/2 is just the expectation value for a single
flip of a perfect coin.

Cov(X ,Y ) =
1∑

i=0

1∑
j=0

[
i − E(X )

]︸ ︷︷ ︸
=i− 1

2

·
[
j − E(X )

]︸ ︷︷ ︸
=j− 1

2

· f (i , j)︸ ︷︷ ︸
=1/4

=
1

4

1∑
i=0

1∑
j=0

(
i − 1

2

)
·
(

j − 1

2

)

=
1

4

1∑
i=0

(
i − 1

2

) 1∑
j=0

(
j − 1

2

)
︸ ︷︷ ︸
=− 1

2
+ 1

2
=0

= 0
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Ex. 1.6: Estimate Parameters of Random Var. from Sample

The gross income per month (= X ) and the spending on foods per month
(= Y ) are sampled for N = 4 persons e1, e2, e3, e4:

Person X (in Euros) Y (in Euros)

e1 6000 300

e2 5000 250

e3 6500 400

e4 4500 250

means

Estimate the expectation values E(X ), E(Y ), the variances Var(X ),
Var(Y ), the covariance Cov(X ,Y ) and the correlation coefficient %(X ,Y ).
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Ex. 1.6: Estimate Parameters of Random Var. from Sample

Solution: We estimate the expectation values via the means:

µ̂X = x =
1

4

(
6000 + 5000 + 6500 + 4500

)
=

22000

4
= 5500,

µ̂Y = y =
1

4

(
300 + 250 + 400 + 250

)
=

1200

4
= 300.

The expectation value E(X ) of the monthly gross income X is estimated
by µ̂X = x = 5500 Euros. The expectation value E(Y ) of the monthly
spending on foods Y is estimated by µ̂Y = y = 300 Euros.

σ̂X
2 =

1

3

[
(6000− 5500)2 + (5000− 5500)2

+(6500− 5500)2 + (4500− 5500)2
]

=
1

3

[
5002 + (−500)2 + 10002 + (−1000)2

]
=

2500000

3
= 833333.3

The variance Var(X ) = σ2
X is estimate by σ̂X

2 ≈ 833333.33, and the

standard deviation σX of X is estimated by σ̂X =
√

833333.3 ≈ 912.87.
Dr. Kerstin Hesse (HHL) Solutions: Methods of Multivariate Statistics HHL, May 4-5, 2012 15 / 83



Ex. 1.6: Estimate Parameters of Random Var. from Sample

σ̂Y
2 =

1

3

[
(300− 300)2 + (250− 300)2 + (400− 300)2 + (250− 300)2

]
=

1

3

[
02 + (−50)2 + 1002 + (−50)2

]
=

15000

3
= 5000

The variance Var(Y ) = σ2
Y is estimated by σ̂Y

2 = 5000, and
the standard deviation σY of Y is estimated by σ̂Y =

√
5000 ≈ 70.71.

Next we estimate the covariance of X and Y from our sample.

Ĉov(X ,Y ) =
1

3

[
(6000− 5500) · (300− 300) + (5000− 5500) · (250− 300)

+(6500− 5500) · (400− 300) + (4500− 5500) (250− 300)
]

=
1

3

[
500 · 0 + (−500) · (−50) + 1000 · 100 + (−1000) · (−50)

]
=

1

3

[
0 + 25000 + 100000 + 50000

]
=

175000

3
= 58333.3

The covariance Cov(X ,Y ) is estimated by Ĉov(X ,Y ) ≈ 58333.33.
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Ex. 1.6: Estimate Parameters of Random Var. from Sample

To get a better idea of the strength of the correlation of X and Y we
finally estimate the correlation coefficient:

%̂(X ,Y ) =
Ĉov(X ,Y )

σ̂X σ̂Y
=

58333.3√
833333.3 ·

√
5000

≈ 0.904

The correlation coefficient %(X ,Y ) is estimated by %̂(X ,Y ) ≈ 0.904 which
is quite close to 1 and indicates a very strong correlation between the
monthly gross income X and the monthly spending on foods Y .
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Ex. 1.7: Hypothesis Testing

In our geese farm not only the average weight but the variance of the
geese was sampled in 2010 and 2011, in order to determine whether the
geese fodder (which was changed at the start of 2011) influenced the
variance of the weight.

For a sample of n1 = n2 = 101 geese in each year we found the variance
s2
1 = 1962 g2 (2010) and s2

2 = 1532 g2 (2011). The quotient

F =
S2

1/σ2
1

S2
2/σ2

2

,

where S2
1 and S2

2 are the random variables for the sample variances and σ2
1

and σ2
2 are the variances in the population in 2010 and 2011, follows an

F-distribution with ν1 = n1 − 1 and ν2 = n2 − 1 degrees of freedom.

Use this information to test the null hypothesis/ that the variances of the
weight are the same with a significance level of α = 0.05 against the
alternative hypothesis that σ2

1 > σ2
2.
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Ex. 1.7: Hypothesis Testing

Solution:
1 Formulating the Null Hypothesis and the Alternative Hypothesis:

H0 : σ2
1 = σ2

2 (The variance of the weight is the same in both years.)

H1 : σ2
1 > σ2

2 (The variance of the weight in 2010 is larger than in 2011.)

2 Find the Test Variable and its Distribution: The test variable is

F =
S2

1/σ2
1

S2
2/σ2

2

, (2)

and its follows an F -distribution with ν1 = n1 − 1 = 100 numerator
and ν2 = n2 − 1 = 100 denominator degrees of freedom.

Under the null hypothesis σ2
1 = σ2

2, the variances of the geese
population cancel in (2). So our test variable is

F =
S2

1

S2
2

,
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Ex. 1.7: Hypothesis Testing

3 Determination of the Critical Area (for Acceptance of the Null
Hypothesis): As the alternative hypothesis is an inequality, we have a
one-sided test with α = 0.05. Consulting the table of the
F -distribution with ν1 = 100 numerator and ν2 = 100 denominator
degrees of freedom, we find that the critical value is:

fc = 1.39

If f = s2
1/s2

2 > fc then the null hypothesis is rejected.

If f = s2
1/s2

2 ≤ fc then the null hypothesis cannot be rejected.

4 Computation of the Value of the Test Variable:

f =
s2
1

s2
2

=
1962

1532
= 1.641
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Ex. 1.7: Hypothesis Testing

5 Decision about the Hypotheses and Interpretation: As

f = 1.641 > fc = 1.39

the null hypothesis is rejected .

Interpretation: The chance to reject the null hypothesis, when it is in
fact true, is 0.05 (or 5%). This means that with 95% confidence we
can say that the variance of the weight σ2

1 in 2010 is strictly larger
than the variance of the weight σ2

2 in 2011.
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Ex. 2.1: Effect of Different Fertilizers on the Crop Yield

The effect of four different types of fertilizer (A1,A2,A3 and A4) on the
crop yield shall be investigated.

Describe this problem in terms of one-way ANOVA.

Given 40 fields of equal size and soil quality, suggest a way of
investigating this problem empirically.

Solution:

population: P = set of all fields

independent variable/factor : A = method of fertilization with
4 factor levels given by the 4 types of fertilizer A1,A2,A3 and A4

4 subpopulations: P1,P2,P3 and P4, where
Pi = fields fertilized with fertilizer Ai

dependent metric variable: Y = crop yield (e.g. measured in tons of
crop per km2)

design of empirical investigation: Fertilize 100 fields each with
fertilizer A1,A2,A3 and A4, respectively. Measure the crop yield.
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Ex. 2.2: Effect of Shelf Placement on Margarine Sales

How does the shelf placement (options: A1 = normal shelf or
A2 = cooling shelf) effect the sales of margarine?

Describe this problem in terms of one-way ANOVA.

Suggest a way to investigate this problem empirically.

Solution: The population is the set of all supermarkets.

qualitative independent variable/factor : A = shelf placement with the
2 factor levels A1 = normal shelf, A2 = cooling shelf.

2 subpopulations: P1 = supermarkets with margarine in the normal
shelf A1; P2 = supermarkets with margarine in the cooling shelf A2.

metric variable: Y = margarine sales, measured e.g. via kg of
margarine sold per 1000 transactions at the cash register.

design of empirical investigation: In 100 comparable supermarkets,
place margarine in the normal self in 50 supermarkets and in the
cooling shelf in the other 50 supermarkets. Measure the margarine
sales over 1 month.
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Ex. 2.3: Effect of Teaching Method on Student Marks

A sample of 4 students is taken from each subpopulation Pi , where
Pi = subpopulation taught with teaching method Ai , and where
A1 = traditional teaching, A2 = distance learning, A3 = blended learning.

The random variable Y = mark (of the student) is measured for each
sample, giving the data in the table below.

A1 A2 A3

1 70 57 88

2 80 54 82

3 75 46 90

4 75 43 80

sum

y i = sum
ni

Perform a 1-way ANOVA for this data:

Compute the means.

Then compute the sums of squares and
the mean square deviations.

Finally use hypothesis testing with a
significance level of α = 0.05 (and
α = 0.01) to find whether the teaching
method has any effect on the marks.
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Ex. 2.3: Effect of Teaching Method on Student Marks

Solution: The factor A is the teaching method with 3 factor levels:
A1 = traditional teaching, A2 = distance learning, A3 = blended learning.
The independent metric variable is Y = mark (of the student).
In each subpopulation we have n1 = n2 = n3 = n = 4 students.

ANOVA Model: yik︸︷︷︸
mark of student k

taught with Ai

= µ︸︷︷︸
average
mark

+ αi︸︷︷︸
effect on mark from
teaching method Ai

+ εik︸︷︷︸
random
error

A1 A2 A3

1 70 57 88

2 80 54 82

3 75 46 90

4 75 43 80

sum 300 200 340

y i = sum
4 75 50 85

Means in the samples:
y1 = 75, y2 = 50, y3 = 85

Grand mean: As the samples in
each subpopulation have the same
size n = 4:

y =
y1 + y2 + y3

3

=
75 + 50 + 85

3
=

210

3
= 70
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Ex. 2.3: Effect of Teaching Method on Student Marks

Computed so far: y1 = 75, y2 = 50, y3 = 85, and y = 70
We complete an ANOVA table for r = 3 factor levels and for samples of
the same size n = 4 in each subpopulation; hence N = r · n = 12.

Source of
Variation

degrees of
freedom (df)

Sum of
Squares

Mean Sum
of Squares

F

Between Groups r − 1 SSA MSA = SSA
r−1

MSA
MSE

Within Groups N − r SSE MSE = SSE
N−r

Total N − 1 SST

SSA = 4 · (75− 70)2 + 4 · (50− 70)2 + 4 · (85− 70)2 = 2600,

SSE = (70− 75)2 + (80− 75)2 + (75− 75)2 + (75− 75)2

+(57− 50)2 + (54− 50)2 + (46− 50)2 + (43− 50)2

+(88− 85)2 + (82− 85)2 + (90− 85)2 + (80− 85)2 = 248,
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Ex. 2.3: Effect of Teaching Method on Student Marks

SST = SSA + SSE = 2600 + 248 = 2848.

The ANOVA table is shown below:

Source of
Variation

df
Sum of
Squares

Mean Sum
of Squares

F

Between Groups 2 2600 2600
2 = 1300 1300

248/9 ≈ 47.18

Within Groups 9 248 248
9 ≈ 27.56

Total 11 2848

The random variable F = MSA
MSE follows an F-distribution with r − 1 = 2

numerator and N − r = 9 denominator degrees of freedom. For our data
we find the value:

f =
1300

248/9
≈ 47.18
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Ex. 2.3: Effect of Teaching Method on Student Marks

Null Hypothesis H0: The mark does not depend on the method of
teaching, i.e. α1 = α2 = α3 = 0 or equivalently µ1 = µ2 = µ3 = µ.

Alternative Hypothesis H1: The mark does depend on the method of
teaching, i.e. there is at least one αi 6= 0.

Hypothesis Testing with a significance level of α = 0.05 (and α = 0.01):

The tables for the F-distribution for r − 1 = 2 numerator and N − r = 9
denominator degrees of freedom for α = 0.05 (and α = 0.01) yield:

f2,9,0.05 = 4.26 (and f2,9,0.01 = 8.02).

As f ≈ 47.18 is strictly larger than these values we reject the null
hypothesis H0, and conclude that the teaching method affects the mark.

The chance of rejecting the null hypothesis, when it is in fact correct, is
α = 0.05 (and α = 0.01), that is 5% (and 1%). So our conclusion has a
5% chance of error.
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Ex. 2.4: Crop Yield Depends on Soil Quality, Fertilizer

Does the crop yield (measured in tons per km2) depend on the soil type,
the type of fertilizer and their interaction?

Here we consider 3 soil types A1,A2,A3 and 2 types of fertilizer B1 and
B2. We are given the following data for the crop yield Y :

B1 B2 means

A1 y1,1,1 = 2, y1,1,2 = 2 y1,2,1 = 3, y1,2,2 = 4

A2 y2,1,1 = 1, y2,1,2 = 2 y2,2,1 = 4, y2,2,2 = 5

A3 y3,1,1 = 3, y3,1,2 = 2 y3,2,1 = 4, y3,2,2 = 4

means

First complete the table to compute the means y i ·, y ·j and y .
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Ex. 2.4: Crop Yield Depends on Soil Quality, Fertilizer

Now compute the means y ij for the interaction Ai × Bj of the factors A
and B.

B1 B2

A1

A2

A3

Next compute the sums of squares.

Now complete the 2-way ANOVA table shown on the next slide.
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Ex. 2.4: Crop Yield Depends on Soil Quality, Fertilizer

Source Sum of Degrees of Mean Square F -Value
Squares Freedom (df) Variation

Factor A

Factor B

A× B

Error

Total

Finally formulate the three null hypotheses and alternative hypotheses.

Determine with a significance level of α = 0.05 which of the three null
hypotheses can be rejected. Interpret your result!
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Ex. 2.4: Crop Yield Depends on Soil Quality, Fertilizer

Solution:

B1 B2 means

A1 y1,1,1 = 2, y1,1,2 = 2 y1,2,1 = 3, y1,2,2 = 4 y1· = 11
4 = 2.75

A2 y2,1,1 = 1, y2,1,2 = 2 y2,2,1 = 4, y2,2,2 = 5 y2· = 12
4 = 3

A3 y3,1,1 = 3, y3,1,2 = 2 y3,2,1 = 4, y3,2,2 = 4 y3· = 13
4 = 3.25

means y ·1 = 12
6 = 2 y ·2 = 24

6 = 4 y = 36
12 = 3

y1· = 1
4 ·
(
y1,1,1 + y1,1,2 + y1,2,1 + y1,2,2

)
= 1

4 ·
(
2 + 2 + 3 + 4

)
= 11

4 = 2.75

y2· = 1
4 ·
(
y2,1,1 + y2,1,2 + y2,2,1 + y2,2,2

)
= 1

4 ·
(
1 + 2 + 4 + 5

)
= 12

4 = 3

y3· = 1
4 ·
(
y3,1,1 + y3,1,2 + y3,2,1 + y3,2,2

)
= 1

4 ·
(
3 + 2 + 4 + 4

)
= 13

4 = 3.25
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Ex. 2.4: Crop Yield Depends on Soil Quality, Fertilizer

y ·1 = 1
6 ·
(
y1,1,1 + y1,1,2 + y2,1,1 + y2,1,2 + y3,1,1 + y3,1,2

)
= 1

6 ·
(
2 + 2 + 1 + 2 + 3 + 2) = 12

6 = 2

y ·2 = 1
6 ·
(
y1,2,1 + y1,2,2 + y2,2,1 + y2,2,2 + y3,2,1 + y3,2,2

)
= 1

6 ·
(
3 + 4 + 4 + 5 + 4 + 4) = 24

6 = 4

y = 1
12 ·

(
y1,1,1 + y1,1,2 + y1,2,1 + y1,2,2 + y2,1,1 + y2,1,2

+ y2,2,1 + y2,2,2 + y3,1,1 + y3,1,2 + y3,2,1 + y3,2,2

)
= 1

12 ·
(
2 + 2 + 3 + 4 + 1 + 2 + 4 + 5 + 3 + 2 + 4 + 4

)
= 36

12 = 3

We compute the means for the interaction of the factors:

y1,1 = 1
2 ·
(
y1,1,1 + y1,1,2

)
= 1

2 · (2 + 2) = 4
2 = 2

y1,2 = 1
2 ·
(
y1,2,1 + y1,2,2

)
= 1

2 · (3 + 4) = 7
2 = 3.5
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Ex. 2.4: Crop Yield Depends on Soil Quality, Fertilizer

y2,1 = 1
2 ·
(
y2,1,1 + y2,1,2

)
= 1

2 · (1 + 2) = 3
2 = 1.5

y2,2 = 1
2 ·
(
y2,2,1 + y2,2,2

)
= 1

2 · (4 + 5) = 9
2 = 4.5

y3,1 = 1
2 ·
(
y3,1,1 + y3,1,2

)
= 1

2 · (3 + 2) = 5
2 = 2.5

y3,2 = 1
2 ·
(
y3,2,1 + y3,2,2

)
= 1

2 · (4 + 4) = 8
2 = 4

The means for the interaction of two factor levels are listed in the table
below:

B1 B2

A1 y1,1 = 2 y1,2 = 7
2 = 3.5

A2 y2,1 = 3
2 = 1.5 y2,3 = 9

2 = 4.5

A3 y3,1 = 5
2 = 2.5 y3,2 = 4
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Ex. 2.4: Crop Yield Depends on Soil Quality, Fertilizer

Computation of the sums of squares, where r = 3, q = 2 and n = 2:

SSA = n · q ·
[
(y1· − y)2 + (y2· − y)2 + (y3· − y)2

]
= 4 ·

[
(2.75− 3)2 + (3− 3)2 + (3.25− 3)2

]
= 4 · 2 · 0.252 = 8

16 = 1
2 = 0.5

SSB = n · r ·
[
(y ·1 − y)2 + (y ·2 − y)2

]
= 6 ·

[
(2− 3)2 + (4− 3)2

]
= 6 · 2 = 12
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Ex. 2.4: Crop Yield Depends on Soil Quality, Fertilizer

SSAB = n ·
[
(y1,1 − y1· − y ·1 + y)2 + (y1,2 − y1· − y ·2 + y)2

+(y2,1 − y2· − y ·1 + y)2 +
(
y2,2 − y2· − y ·2 + y)2

+(y3,1 − y3· − y ·1 + y)2 + (y3,2 − y3· − y ·2 + y)2
]

= 2 ·
[
(2− 2.75− 2 + 3)2 + (3.5− 2.75− 4 + 3)2

+(1.5− 3− 2 + 3)2 + (4.5− 3− 4 + 3)2

+(2.5− 3.25− 2 + 3)2 + (4− 3.25− 4 + 3)2
]

= 2 ·
[
(0.25)2 + (−0.25)2 + (−0.5)2 + (0.5)2 + (0.25)2 + (−0.25)2

]
= 2 ·

[
4
16 + 2

4

]
= 2 ·

[
1
4 + 1

2

]
= 3

2 = 1.5
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Ex. 2.4: Crop Yield Depends on Soil Quality, Fertilizer

SSE = (y1,1,1 − y1,1)
2 + (y1,1,2 − y1,1)

2 + (y1,2,1 − y1,2)
2

+(y1,2,2 − y1,2)
2 + (y2,1,1 − y2,1)

2 + (y2,1,2 − y2,1)
2

+(y2,2,1 − y2,2)
2 + (y2,2,2 − y2,2)

2 + (y3,1,1 − y3,1)
2

+(y3,1,2 − y3,1)
2 + (y3,2,1 − y3,2)

2 + (y3,2,2 − y3,2)
2

= (2− 2)2 + (2− 2)2 + (3− 3.5)2 + (4− 3.5)2

+(1− 1.5)2 + (2− 1.5)2 + (4− 4.5)2 + (5− 4.5)2

+(3− 2.5)2 + (2− 2.5)2 + (4− 4)2 + (4− 4)2

= 8 · 0.52 = 8 · 0.25 = 2

SST = SSA + SSB + SSAB + SSE = 0.5 + 12 + 1.5 + 2 = 16
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Ex. 2.4: Crop Yield Depends on Soil Quality, Fertilizer

ANOVA Table:

Source Sum of Degrees of Mean Square F -value
Squares Freedom (df) Variance

A
SSA =
1
2 = 0.5

3− 1 = 2
MSA =
1
4 = 0.25

MSA
MSE = 1/4

1/3

= 3
4 = 0.75

B SSB = 12 2− 1 = 1 MSB = 12 MSB
MSE = 12

1/3 = 36

A× B
SSAB =
3
2 = 1.5

2 · 1 = 2
MSAB =
3
4 = 0.75

MSAB
MSE = 3/4

1/3

= 9
4 = 2.25

Error SSE = 2 12− 2 · 3 = 6 MSE = 2
6 = 1

3

Total SST = 16 12− 1 = 11 MST = 16
11
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Ex. 2.4: Crop Yield Depends on Soil Quality, Fertilizer

Factor A (soil quality):

H0: µ1· = µ2· = µ3· = µ, i.e. the average crop yields µi · for the different
soil qualities are the same as the overall average crop yield µ. Hence the
crop yield does not depend on the soil quality.

H1: For at least one µi · we have µi · 6= µ, i.e. the crop yield does depend
on the soil quality.

The random variable

FA =
MSA

MSE

follows an F-distribution with (numerator, denominator) = (2, 6) degrees
of freedom. From the table for the F -distribution for α = 0.05 we find
f2,6,0.05 = 5.14.

From the ANOVA table, we have the value fA = 0.75 for FA = MSA
MSE .

As fA = 0.75 ≤ f2,6,0.05 = 5.14 we cannot reject the null hypothesis, and
we conclude that the soil quality does not affect the crop yield.
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Ex. 2.4: Crop Yield Depends on Soil Quality, Fertilizer

Factor B (fertilizer):

H0; µ·1 = µ·2 = µ, i.e. the average crop yields µ·j for the different
fertilizers are the same as the overall average crop yield µ. Hence the crop
yield does not depend on the fertilizer.

H1: Either µ·1 6= µ or µ·2 6= µ, i.e. the crop yield depends on the fertilizer.

The random variable

FB =
MSB

MSE

follows an F-distribution with (numerator, denominator) = (1, 6) degrees
of freedom. From the table for the F -distribution for α = 0.05 we find
f1,6,0.05 = 5.99.

From the ANOVA table, we have the value fB = 36 for FB = MSB
MSE . As

fB = 36 > f1,6,0.05 = 5.99, we reject the null hypothesis and conclude that
the crop yield does depend on the fertilizer. The chance of rejecting the
null hypothesis, when it is in fact true, is α = 0.05 or 5%.
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Ex. 2.4: Crop Yield Depends on Soil Quality, Fertilizer

Interaction A× B (soil quality and fertilizer):

H0: γ1,1 = γ1,2 = γ2,1 = γ2,2 = γ3,1 = γ3,2, i.e. the average crop yield
does not depend on the interaction of soil type and fertilizer.

H1: For at least two pairs (i , j) and (k, `) we have γi ,j 6= γk,`, i.e. the crop
yield depends on the interaction of soil type and fertilizer.

The random variable FA×B = MSAB
MSE follows an F-distribution with

(numerator, denominator) = (2, 6) degrees of freedom. From the table for
the F -distribution for α = 0.05 we find f2,6,0.05 = 5.14.

From the ANOVA table, fA×B = 2.25 is the value for FA×B = MSAB
MSE . As

fA×B = 2.25 < f2,6,0.05 = 5.14 the null hypothesis cannot be rejected ,
i.e. the crop yield does not depend on the interaction of soil type and
fertilizer.

Comment: As the average crop yield does not depend on the soil type
(factor A), it does not make sense to ask about the interaction A× B.
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Ex. 3.1: Visualization of Height, Weight, Inseam Length

Visualize the following data with Method 1 and interpret your results.

Person height in cm weight in kg inseam length in cm

e1 180 74 78

e2 160 50 68

e3 170 65 73

Why is the standardization of the variables here particularly useful?

Solution: We start by computing the arithmetic means of the three
random variables X1 = height, X2 = weight, and X3 = inseam length.
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Ex. 3.1: Visualization of Height, Weight, Inseam Length

x1 = 1
3 ·
(
180 + 160 + 170

)
= 510

3 = 170

x2 = 1
3 ·
(
74 + 50 + 65

)
= 189

3 = 63

x3 = 1
3 ·
(
78 + 68 + 73

)
= 219

3 = 73

So the arithmetic means are x1 = 170 cm, x2 = 63 kg, and x3 = 73 cm.
Next we compute the empirical variances and standard deviations:

s2
1 = 1

2 ·
[
(180− 170)2 + (160− 170)2 + (170− 170)2

]
= 1

2 ·
[
102 + (−10)2

]
= 200

2 = 100

s2
2 = 1

2 ·
[
(74− 63)2 + (50− 63)2 + (65− 63)2

]
= 1

2 ·
[
112 + (−13)2 + 22

]
= 294

2 = 147

s2
s = 1

2 ·
[
(78− 73)2 + (68− 73)2 + (73− 73)2

]
= 1

2 ·
[
52 + (−5)2

]
= 50

2 = 25
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Ex. 3.1: Visualization of Height, Weight, Inseam Length

The empirical standard deviations are given by:

s1 =
√

100 = 10, s2 =
√

147 ≈ 12.124, s3 =
√

25 = 5.

Now we can compute the values for the corresponding standardized
random variables:

Z1 =
X1 − x1

s1
=

X1 − 170

10

Z2 =
X2 − x2

s2
=

X1 − 63√
147

Z3 =
X3 − x3

s3
=

X3 − 73

5

With these formulas, we compute the following standardized data matrix :
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Ex. 3.1: Visualization of Height, Weight, Inseam Length

Z =


180−170

10
74−63√

147
78−73

5

160−170
10

50−63√
147

68−73
5

170−170
10

65−63√
147

73−73
5

 ≈


1 0.907 1

−1 −1.072 −1

0 0.165 0


The columns of the standardized data matrix are plotted on the next slide,
where the axes of the coordinate system correspond to the persons e1, e2

and e3. Thus a point in our coordinate system represents the values of one
standardized random variable for the three persons in our sample.

The three points in our coordinate systems for the standardized random
variables Z1 (height), Z2 (weight) and Z3 (inseam length) are very close
together , indicating a strong correlation between these variables.

Comment: The standardization of the random variables is here particularly
useful, as it removes the effect of the different scales of the random
variables and thus makes their correlation easily visible.
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Ex. 3.1: Visualization of Height, Weight, Inseam Length
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Ex. 3.2: Height and Weight, Visualization with Method 2

Write down the data matrix and X and visualize the following data with
Method 2. Interpret your results.

Person height in cm weight in kg

e1 180 72

e2 181 90

e3 182 71

e4 181 91

Solution: The data matrix is given by
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Ex. 3.2: Height and Weight, Visualization with Method 2

X =


180 72

181 90

182 71

181 91


← person e1

← person e2

← person e3

← person e4

and we have plotted its row vectors on the next slide.

We observe two clusters/groups of points:

cluster 1 contains persons e1 and e3

cluster 2 contains persons e2 and e4

We may identify cluster 1 with normal weight persons and cluster 2 with
slightly overweight persons.

Note: This way of forming clusters is still too naive: If we add another
normal weight person with height 160 cm and weight 50 kg, then this
person would lie far apart from both clusters due to her/his shorter height!
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Ex. 3.2: Height and Weight, Visualization with Method 2
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Ex. 3.3: Height and Weight Data, Euclidean Distance

Compute the Euclidean distance
between the following persons,
based on the given data of their
height and weight. Comment on
your results.

Person height (cm) weight (kg)

e1 180 72

e2 181 90

e3 182 71

e4 181 91

Solution:

d1,1 = 0

d1,2 =
√

(180− 181)2 + (72− 90)2 =
√

(−1)2 + (−18)2 =
√

325 ≈ 18.028

d1,3 =
√

(180− 182)2 + (72− 71)2 =
√

(−2)2 + 12 =
√

5 ≈ 2.236

d1,4 =
√

(180− 181)2 + (72− 91)2 =
√

(−1)2 + (−19)2 =
√

362 ≈ 19.026
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Ex. 3.3: Height and Weight Data, Euclidean Distance

d2,1 = d1,2 =
√

325 ≈ 18.028

d2,2 = 0

d2,3 =
√

(181− 182)2 + (90− 71)2 =
√

(−1)2 + 192 =
√

362 ≈ 19.026

d2,4 =
√

(181− 181)2 + (90− 91)2 =
√

02 + (−1)2 =
√

1 = 1

d3,1 = d1,3 =
√

5 ≈ 2.236

d3,2 = d2,3 =
√

362 ≈ 19.026

d3,3 = 0

d3,4 =
√

(182− 181)2 + (71− 91)2 =
√

12 + (−20)2 =
√

401 ≈ 20.025

d4,1 = d1,4 =
√

362 ≈ 19.026
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Ex. 3.3: Height and Weight Data, Euclidean Distance

d4,2 = d2,4 = 1

d4,3 = d3,4 =
√

401 ≈ 20.025

d4,4 = 0

From the computed distances, we find that persons e1 and e3 are similar
and that persons e2 and e4 are also similar .

The persons e1 and e3 are dissimilar from the persons e2 and e4.

This reflects our results from the visualization in the previous question.
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Ex. 3.4: City Block Distance and Tschebyscheff Distance

Compute the city block distance and Tschebyscheff distance between the
following persons, based on the given data of their height and weight.
Comment on your results.

Person height (cm) weight (kg)

e1 180 72

e2 181 90

e3 182 71

e4 181 91

Solution: We compute the city block distance and the Tschebyscheff
distance.
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Ex. 3.4: City Block Distance and Tschebyscheff Distance

City block distance:

d1,1 = 0

d1,2 = |180− 181|+ |72− 90| = 1 + 18 = 19 ⇒ d2,1 = d1,2 = 19

d1,3 = |180− 182|+ |72− 71| = 2 + 1 = 3 ⇒ d3,1 = d1,3 = 3

d1,4 = |180− 181|+ |72− 91| = 1 + 19 = 20 ⇒ d4,1 = d1,4 = 20

d2,2 = 0

d2,3 = |181− 182|+ |90− 71| = 1 + 19 = 20 ⇒ d3,2 = d2,3 = 20

d2,4 = |181− 181|+ |90− 91| = 0 + 1 = 1 ⇒ d4,2 = d2,4 = 1

d3,3 = 0

d3,4 = |182− 181|+ |71− 91| = 1 + 20 = 21 ⇒ d4,3 = d3,4 = 21

d4,4 = 0
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Ex. 3.4: City Block Distance and Tschebyscheff Distance

Tschebyscheff distance:

d1,1 = 0

d1,2 = max
{
|180− 181|, |72− 90|

}
= max{1, 18} = 18 ⇒ d2,1 = 18

d1,3 = max
{
|180− 182|, |72− 71|

}
= max{2, 1

}
= 2 ⇒ d3,1 = 2

d1,4 = max
{
|180− 181|, |72− 91|

}
= max{1, 19} = 19 ⇒ d4,1 = 19

d2,2 = 0

d2,3 = max
{
|181− 182|, |90− 71|

}
= max{1, 19} = 19 ⇒ d3,2 = 19

d2,4 = max
{
|181− 181|, |90− 91|

}
= max{0, 1} = 1 ⇒ d4,2 = 1

d3,3 = 0

d3,4 = max
{
|182− 181|, |71− 91|

}
= max{1, 20} = 20 ⇒ d4,3 = 20

d4,4 = 0
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Ex. 3.4: City Block Distance and Tschebyscheff Distance

For both the city block distance and the Tschebyscheff distance we note
from the computed distances that:

the persons e1 and e3 are similar,

the persons e2 and e4 are similar,

the person e1 and e3 are dissimilar from the persons e2 and e4.

We note that we arrived at this conclusion regardless which distance was
used.
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Ex. 4.1: Normal and Overweight Males

Consider the vector of random variables x = (X1,X2)
′, with X1 = height in

cm, X2 = weight in kg. Given the linear function

Y = a′ x with a′ = (2/
√

5,−1/
√

5) ≈ (0.894,−0.447),

compute the values of Y for the data given below. Visualize the sampled
data and the values for Y and also the corresponding means.

Group 1: normal weight males

Person Height Weight Y

e1,1 165 55

e1,2 180 70

e1,3 195 85

Means

Group 2: overweight males

Person Height Weight Y

e2,1 160 65

e2,2 170 90

e2,3 180 100

Means
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Ex. 4.1: Normal and Overweight Males

Solution: We set X1 = height and X2 = weight. We have

Y = a′ x =
2√
5
· X1 −

1√
5
· X2.

Group 1: K1 = normal weight males

Person X1 X2 Y

e1,1 165 55 122.98

e1,2 180 70 129.69

e1,3 195 85 136.40

Means 180 70 129.69

Group 2: K2 = overweight males

Person X1 X2 Y

e2,1 160 65 114.04

e2,2 170 90 111.80

e2,3 180 100 116.28

Means 170 85 114.04

Means in group K1: x1 = (180, 70)′, y1 = 129.69
Means in group K2: x2 = (170, 85)′, y2 = 114.04
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Ex. 4.1: Normal and Overweight Males
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Ex. 4.2: Normal and Overweight Males

Given the data in the tables below, find the vector a for the function
Y = a′x and compute the values of Y = a′x for the given data and
visualize them on the Y -axis.

Group 1: K1 = normal weight males

Person height (cm) weight (kg)

e1,1 165 55

e1,2 180 70

e1,3 195 85

Group 2: K2 = overweight males

Person height (cm) weight (kg)

e2,1 160 65

e2,2 170 90

e2,3 180 100

Solution: Let X1 = height and X2 = weight. From the calculations in
Ex. 4.1, the means for x = (X1,X2)

′ are x1 = (180, 70)′ in K1 and
x2 = (170, 85)′ in K2. We start with computing the matrix W.
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Ex. 4.2: Normal and Overweight

W =

(
450 450
450 450

)
︸ ︷︷ ︸

=W1

+

(
200 350
350 650

)
︸ ︷︷ ︸

=W2

=

(
650 800
800 1100

)
,

where in group 1 (= K1)

(W1)11 = (165− 180)2 + (180− 180)2 + (195− 180)2 = 450,

(W1)22 = (55− 70)2 + (70− 70)2 + (85− 70)2 = 450,

(W1)12 = (W1)21 = (165− 180) (55− 70) + (180− 180) (70− 70)

+ (195− 180) (85− 70) = 450,

and in group 2 (= K2)

(W2)11 = (160− 170)2 + (170− 170)2 + (180− 170)2 = 200,

(W2)22 = (65− 85)2 + (90− 85)2 + (100− 85)2 = 650,

(W2)12 = (W1)21 = (160− 170) (65− 85) + (170− 170) (90− 85)

+ (180− 170) (100− 85) = 350.
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Ex. 4.2: Normal and Overweight Males

W−1 =
1

det(W)

(
1100 −800
−800 650

)
=

1

75000

(
1100 −800
−800 650

)

=

(
11
750 − 4

375

− 4
375

13
1500

)
≈

(
0.0147 −0.0107

−0.0107 0.0087

)
,

with
det(W) = 1100 · 650− (−800) · (−800) = 75000.

Find the vector a: We compute a = W−1(x1 − x2)/‖W−1(x1 − x2)‖2:

W−1(x1 − x2) =

(
11
750 − 4

375

− 4
375

13
1500

)[(
180

70

)
−

(
170

85

)]

=

(
11
750 − 4

375

− 4
375

13
1500

)(
10

−15

)
=

(
23
75

− 71
300

)
≈

(
0.307

−0.237

)
,
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Ex. 4.2: Normal and Overweight Males

a =
W−1(x1 − x2)

‖W−1(x1 − x2)‖2
≈

(
0.307
−0.237

)
√

0.3072 + (−0.237)2
≈
(

0.792
−0.611

)

Y = a′ x = (0.792,−0.611)

(
X1

X2

)
= 0.792 · X1 − 0.611 · X2

Group 1: K1 normal weight males

X1 X2 Y

e1,1 165 55 97.08

e1,2 180 70 99.79

e1,3 195 85 102.51

Means 180 70 99.79

Group 2: K2 = overweight males

X1 X2 Y

e2,1 160 65 87.01

e2,2 170 90 79.65

e2,3 180 100 81.46

Means 170 85 82.71
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Ex. 4.2: Normal and Overweight Males

To visualize the data for Y we only need one axis, the Y -axis representing
the new variable Y .

The data for Y from group K1 has been visualized by the unfilled dots and
the data from group K2 has been visualized by the filled dots. The dots in
read represent the means of Y in the two groups.

We note that the two groups are pretty well separated.
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Ex. 4.3: Classification of Normal and Overweight Males

Given the function

Y = a′ x = (0.792,−0.611)

(
X1

X2

)
= 0.792 · X1 − 0.611 · X2

and the groups means y1 = 99.79 and y2 = 82.71 computed in Ex. 4.2,
classify a male person with height = 190 cm and weight = 120 kg.

Solution: For the new person x1 = 190 and x2 = 120. Hence

y = 0.792 · x1 − 0.611 · x2 = 0.792 · 190− 0.611 · 120 = 77.16.

Because

|77.16− y1| = |77.16− 99.79| = 22.63

> |77.16− y2| = |77.16− 82.71| = 5.55

we allocate the new person to the group K2 (overweight male persons).
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Ex. 5.1: Classifying Digital Cameras

We are given the data on 5 digital cameras below.

Use agglomerative hierarchical classification with the city block distance
and the nearest neighbor rule to form groups of similar digital cameras.

Draw a dendrogram of your hierarchical classification.

Camera Price in 100 Euros Resolution in Pixels

e1 1 6

e2 1.5 8

e3 0.5 3

e4 5 12

e5 6 12
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Ex. 5.1: Classifying Digital Cameras

Solution: Initial partition: P(0) = {K (0)
1 ,K

(0)
2 ,K

(0)
3 ,K

(0)
4 ,K

(0)
5 } with the

groups K
(0)
i = {ei} consisting of just one camera.

We compute the initial distance matrix

D(0) = (d
(0)
ij )i ,j=1,2,...,5 =



0 2.5 3.5 10 11

2.5 0 6 7.5 8.5

3.5 6 0 13.5 14.5

10 7.5 13.5 0 1

11 8.5 14.5 1 0


,

where (D(0))ij = d
(0)
ij is the city block distance of camera ei and ej . The

details of the computation of the matrix entries are shown below:

d
(0)
1,1 = d

(0)
2,2 = d

(0)
3,3 = d

(0)
4,4 = d

(0)
5,5 = 0,
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Ex. 5.1: Classifying Digital Cameras

d
(0)
1,2 = d

(0)
2,1 = |1− 1.5|+ |6− 8| = 2.5,

d
(0)
1,3 = d

(0)
3,1 = |1− 0.5|+ |6− 3| = 3.5,

d
(0)
1,4 = d

(0)
4,1 = |1− 5|+ |6− 12| = 10,

d
(0)
1,5 = d

(0)
5,1 = |1− 6|+ |6− 12| = 11,

d
(0)
2,3 = d

(0)
3,2 = |1.5− 0.5|+ |8− 3| = 6,

d
(0)
2,4 = d

(0)
4,2 = |1.5− 5|+ |8− 12| = 7.5,

d
(0)
2,5 = d

(0)
5,2 = |1.5− 6|+ |8− 12| = 8.5,

d
(0)
3,4 = d

(0)
4,3 = |0.5− 5|+ |3− 12| = 13.5,

d
(0)
3,5 = d

(0)
5,3 = |0.5− 6|+ |3− 12| = 14.5,

d
(0)
4,5 = d

(0)
5,4 = |5− 6|+ |12− 12| = 1.

Dr. Kerstin Hesse (HHL) Solutions: Methods of Multivariate Statistics HHL, May 4-5, 2012 72 / 83



Ex. 5.1: Classifying Digital Cameras

Step 1: From inspecting the initial distance matrix

D(0) = (d
(0)
ij )i ,j=1,2,...,5 =



0 2.5 3.5 10 11

2.5 0 6 7 .5 8 .5

3.5 6 0 13 .5 14 .5

10 7 .5 13 .5 0 1

11 8 .5 14 .5 1 0


,

we find that the minimal non-diagonal entry is d
(0)
4,5 = d

(0)
5,4 = 1 (displayed

in bold-face).

Hence we unite the the groups K
(0)
4 and K

(0)
5 .

We have to delete the 5th row and 5th column (displayed in italics) in
D(0) and compute the new entries for the 4th row and 4th column
(displayed in italics).
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Ex. 5.1: Classifying Digital Cameras

New partition after step 1 : P(1) = {K (1)
1 ,K

(1)
2 ,K

(1)
3 ,K

(1)
4 } with

K
(1)
1 = {e1}, K

(1)
2 = {e2}, K

(1)
3 = {e3} and K

(1)
4 = {e4, e5}.

The new distance matrix D(1) is given by

D(1) = (d
(1)
i ,j )i ,j=1,2,...,4 =


0 2.5 3.5 10

2.5 0 6 7 .5

3.5 6 0 13 .5

10 7 .5 13 .5 0

 ,

where the 4th row and 4th column anew (displayed in italics) were

computed with the nearest neighbor rule: d
(1)
4,4 = 0,

d
(1)
4,1 = d

(1)
1,4 = min{d (0)

4,1 , d
(0)
5,1} = min{10, 11} = 10,

d
(1)
4,2 = d

(1)
2,4 = min{d (0)

4,2 , d
(0)
5,2} = min{7.5, 8.5} = 7.5,

d
(1)
4,3 = d

(1)
3,4 = min{d (0)

4,3 , d
(0)
5,3} = min{13.5, 14.5} = 13.5.
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Ex. 5.1: Classifying Digital Cameras

Step 2: The minimal non-diagonal entry in D(1) is d
(1)
1,2 = d

(1)
2,1 = 2.5

(displayed in bold-face in the distance matrix D(1) below).

Hence we unite the two groups K
(1)
1 and K

(1)
2 .

New partition after step 2 : P(2) = {K (2)
1 ,K

(2)
2 ,K

(2)
3 } with

K
(2)
1 = {e1, e2}, K

(2)
2 = {e3} and K

(2)
3 = {e4, e5}

D(1) = (d
(1)
i ,j )i ,j=1,2,...,4 =


0 2.5 3 .5 10

2.5 0 6 7 .5

3 .5 6 0 13.5

10 7 .5 13.5 0

 .

We need to delete the 2nd row and 2nd column in D(1) (displayed in
italics) and compute the new entries of the 1st row and 1st column
(displayed in italics).
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Ex. 5.1: Classifying Digital Cameras

The new distance matrix D(2) is given by

D(2) = (d
(2)
i ,j )i ,j=1,2,3 =

 0 3 .5 7 .5

3 .5 0 13.5

7 .5 13.5 0

 ,

where the new 1st row and 1st column (displayed in italics) were
computed as follows:

d
(2)
1,1 = 0,

d
(2)
1,2 = d

(2)
2,1 = min{d (1)

1,3 , d
(1)
2,3} = min{3.5, 6} = 3.5,

d
(2)
1,3 = d

(2)
3,1 = min{d (1)

1,4 , d
(1)
2,4} = min{10, 7.5} = 7.5.

Step 3: The minimal entry in D(2) is given by d1,2 = d2,1 = 3.5 (displayed
in bold-face in the matrix D(2) on the next page).
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Ex. 5.1: Classifying Digital Cameras

Hence we unite the groups K
(2)
1 and K

(2)
2 .

New partition after step 3 : P(3) = {K (3)
1 ,K

(3)
2 } with

K
(3)
1 = {e1, e2, e3}, K

(3)
2 = {e4, e5}

D(2) = (d
(2)
i ,j )i ,j=1,2,3 =

 0 3.5 7 .5

3.5 0 13.5

7 .5 13 .5 0


We need to delete the 2nd row and 2nd column of D(2) (displayed in
italics) and compute the new 1st row and 1st column (displayed in italics).
The new distance matrix is given by

D(3) = (d
(3)
i ,j )i ,j=1,2 =

(
0 7 .5

7 .5 0

)
,

where d
(3)
1,1 = 0, d

(3)
1,2 = d

(3)
2,1 = min{d (2)

1,3 , d
(2)
2,3} = min{7.5, 13.5} = 7.5.
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Ex. 5.1: Classifying Digital Cameras

Step 4 : In the next step we finally unite the remaining two groups and

obtain P(4) = {K (4)
1 } with K

(4)
1 = {e1, e2, e3, e4, e5}.

The minimal distance is d3
1,2 = d

(3)
2,1 = 7.5, but here we do not need to

compute anything as D(0) = (0).
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Ex. 5.2: Classifying Digital Cameras

Determine the number of groups for the digital cameras from your results
for Ex. 5.1.

Solution: For our digital camera example, we conclude from inspecting the
dendrogram that we should have two groups:

K1 = {e1, e3, e3} and K2 = {e4, e5},

since in the next (4th) step the distance increases drastically.

The rule of thumb provides

g ≈
√

n/2 =
√

5/2 ≈ 1.58

which rounds to g = 2. This is also the number of groups that we
determined from the dendrogram.
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Ex. 5.3: Quality of the Classification of Digital Cameras

Apply the criteria for the quality of a hierarchical classification in our
digital camera example for the classification

K1 = {e1, e2, e3} and K2 = {e4, e5}.

Solution: We have already computed the initial distance matrix in Ex. 5.1:

D = (di ,j)i ,j=1,2...,5 =



0 2 .5 3 .5 10 11

2 .5 0 6 7.5 8.5

3 .5 6 0 13.5 14.5

10 7.5 13.5 0 1

11 8.5 14.5 1 0


Numbers in italics are the distances between elements in K1 = {e1, e2, e3},
numbers in bold-face are the distances between elements in K2 = {e4, e5},
and the remaining numbers are the distances between an element in
K1 = {e1, e2, e3} and an element in K2 = {e4, e5}. Here n1 = 3, n2 = 2.
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Ex. 5.3: Quality of the Classification of Digital Cameras

Average of the distances of the objects within a group:

g1(K1) = 2
3·(3−1) ·

(
d1,2 + d1,3 + d2,3

)
= 1

3 ·
(
2.5 + 3.5 + 6

)
= 12

3 = 4,

g1(K2) = 2
2·(2−1) ·

(
d4,5

)
= 1

1 = 1.

Distance of the least similar objects in a group:

g2(K1) = max{d1,2, d1,3, d2,3} = max{2.5, 3.5, 6} = 6,

g2(K2) = max{d4,5} = max{1} = 1.

Distance of the most similar objects in a group:

g3(K1) = min{d1,2, d1,3, d2,3} = max{2.5, 3.5, 6} = 2.5,

g3(K2) = min{d4,5} = min{1} = 1.
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Ex. 5.3: Quality of the Classification of Digital Cameras

Complete linkage (furthest neighbor):

v1(K1,K2) = max{d1,4, d1,5, d2,4, d2,5, d3,4, d3,5}
= max{10, 11, 7.5, 8.5, 13.5, 14.5} = 14.5

Single linkage (nearest neighbor):

v2(K1,K2) = min{d1,4, d1,5, d2,4, d2,5, d3,4, d3,5}
= min{10, 11, 7.5, 8.5, 13.5, 14.5} = 7.5

Average linkage: with n1 · n2 = 3 · 2 = 6,

v3(K1,K2) = 1
6

(
d1,4 + d1,5 + d2,4 + d2,5 + d3,4 + d3,5

)
= 1

6

(
10 + 11 + 7.5 + 8.5 + 13.5 + 14.5

)
= 65

6 ≈ 10.83
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Ex. 5.3: Quality of the Classification of Digital Cameras

Squared Euclidean distance of the means:

With the data for the random variable X (see Table on page 70), we first
compute the means in each group

x1 =
1

3

[(
1
6

)
+

(
1.5
8

)
+

(
0.5
3

)]
=

1

3

(
3
17

)
=

(
1

17/3

)
,

x2 =
1

2

[(
5
12

)
+

(
6
12

)]
=

1

2

(
11
24

)
=

(
11/2
12

)
.

Now we can compute the Euclidean distance of the means:

v4(K1,K2) = ‖x1 − x2‖22 =

∥∥∥∥( 1
17/3

)
−
(

11/2
12

)∥∥∥∥2

2

=

∥∥∥∥( −9/2
−19/3

)∥∥∥∥2

2

=

(
−9

2

)2

+

(
−19

3

)2

≈ 60.36.
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