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General Information on the Course

Format of the Course

We will alternate between introducing the new methods and practicing
them on concrete examples.

Software: Some Available Programs

SPSS (licensed): factor analysis

AMOS (licensed): LISREL

SmartPLS (free, but registration required): PLS path modeling

LISREL (licensed): LISREL

EQS – Structural Equation Modeling Software (licensed): LISREL

SAS PROC CALIS (licensed): LISREL

SAS PROC PLS (licensed): PLS path modeling

TETRAD (free): LISREL
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Assessment and Support

Assessment: Take-Home Assignment, Handed Out After the Course

Submission deadline: Monday, July 09, 2012, 4:00 p.m.

Submission by email to me or in hard-copy handed in/sent to me.

Rules of submission: You may collaborate with your colleagues (group
work allowed), but you must prepare your own individual report.

Format of submission: a typeset report or a neatly handwritten one.

For email submission, please email one pdf-file.

Help/Support: How to Get Help on the Take-Home Assignment

Contact me by email, phone or in person.

Email: kerstin.hesse@hhl.de

Phone: +49 (0)341 9851-820

Office: HHL Main Building, Room 115A (I am usually there from
9:00 a.m. to 5:00 p.m., but please make an appointment by email.)
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2011.

L. Fahrmeir, A. Hamerle, G. Tutz (eds.): Multivariate statistische
Verfahren (2nd edn.). Walter de Gruyter, Berlin, 1996.
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S-PLUS (2nd edn.). Springer-Verlag, Heidelberg et al, 2010.
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References on Structural Equation Modeling with LISREL
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Pearson Education, 2007.

R. Weiber, D. Mühlhaus: Strukturgleichungsmodellierung: Eine
anwendungsorientierte Einführung in die Kausalanalyse mit Hilfe von
AMOS, SmartPLS and SPSS. Springer-Verlag, Berlin, Heidelberg,
2010.
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References on Structural Equation Modeling with PLS II
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anwendungsorientierte Einführung in die Kausalanalyse mit Hilfe von
AMOS, SmartPLS and SPSS. Springer-Verlag, Berlin, Heidelberg,
2010.
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Topic 1: Revision of Linear Algebra & Variance/Covariance

Linear Algebra

general notation

scalar multiplication of matrices and matrix multiplication

determinant of a matrix

eigenvalues and eigenvectors of a matrix

transformation of a symmetric matrix to diagonal form

Variance and Covariance

random variables and samples

expectation value and mean

variance and estimating the variance from a sample

centered and standardized random variables and data

covariance and correlation coefficient, and estimating the covariance
and the correlation coefficient from a sample

formal manipulations of expectation values
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General Notation: Scalars and Vectors

Scalar values (real numbers) are denoted by lowercase letters:
x , y , a, b, . . ..

Random variables are denoted by uppercase letters X ,Y ,Z , . . ..
In structural equation modeling we will also use Greek lowercase
letters, e.g. ξ or η, for random variables.

Vectors (of real numbers or random variables) are denoted by
lowercase boldface letters and are by default column vectors
x, y,w, . . .. In x′ the ′ denotes taking the transpose.

x =




x1

x2
...

xN


 = (x1, x2, . . . , xN)′, y =




Y1

Y2
...

Yp


 = (Y1,Y2, . . . ,Yp)′.

The length of a vector x = (x1, x2, . . . , xN)′ is denoted ‖x‖2 and is

‖x‖2 =
√

x2
1 + x2

2 + . . .+ x2
N .
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General Notation: Matrices

Matrices are denoted by boldface uppercase letters A,B,X, . . ..

An n×m matrix A has n rows and m columns:

A = (ai ,j)i=1,2,...,n
j=1,2,...,m

=




a1,1 a1,2 . . . a1,m

a2,1 a2,2 . . . a2,m
...

...
. . .

...
an,1 an,2 . . . an,m


 (1)

The entries of a matrix A are usually denoted by the corresponding
lowercase letter, i.e. ai ,j , with the first index for the row and the
second index for the column (e.g. see (1)).

Occasionally we may also use Ai ,j to refer to the entry in the ith row
and jth column of a matrix A.

We may drop the comma between the indices in ai ,j (i.e. write aij

instead) if there is no ambiguity.
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General Notation: Transpose of a Matrix

For an n ×m matrix A (given by (1)), A′ denotes the transpose of
the matrix A which is the m × n matrix given by

A′ =




a1,1 a2,1 . . . an,1

a1,2 a2,2 . . . an,2
...

...
. . .

...
a1,m a2,m . . . an,m


 . (2)

The entries of the ith row of A become the entries of the ith column
of A′ (indicated in (1) and (2) in violet for the 1st row/column).

Example of a 2× 3 matrix and its transpose:

A =

(
1 2 3
4 5 6

)
, A′ =




1 4
2 5
3 6


 .

Here the entries of A are a1,1 = 1, a1,2 = 2, a1,3 = 3, a2,1 = 4,
a2,2 = 5 and a2,3 = 6.
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Multiplication of Vectors and Matrices by Scalars

Scalar Multiplication: Matrices and vectors are multiplied by a scalar
(real number) by multiplying each entry of the matrix and vector
respectively by the scalar:

α·x =




α·x1

α·x2
...

α·xn


 , β ·A =




β ·a1,1 β ·a1,2 . . . β ·a1,m

β ·a2,1 β ·a2,2 . . . β ·a2,m
...

...
. . .

...
β ·an,1 β ·an,2 . . . β ·an,m


 .

Example of Scalar Multiplication:

3·




1
2
3


 =




3
6
9


 , (−2)·




1 2 3
4 5 6
7 8 9


 =



−2 −4 −6
−8 −10 −12
−14 −16 −18


 .
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Matrix Multiplication

An n×m matrix A = (aik) i=1,...,n
k=1,...,m

can be multiplied with an m× p matrix

B = (bkj )k=1,...,m
j=1,...,p

to form the n× p matrix A·B = AB = C = (ci ,j)i=1,...,n
j=1,...,p

in the following way:

cij =

m∑

k=1

aik ·bkj = ai1 ·b1j + ai2 ·b2j + . . . + aim ·bmj

=

(
inner/scalar product of the ith row vector of A

with the jth column vector of B

)

Beware: Matrix multiplication is not commutative, i.e. usually AB 6= BA
(if both AB and BA are defined).

Ex. 1.1 (Matrix Multiplication): Execute the matrix multiplication



1 1 −1
−1 1 0

0 −2 1






1 2 3
4 5 6
7 8 9


 .
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Determinants of 2× 2 and 3× 3 Matrices

The determinant det(A) of the 2× 2 matrix

A =

(
a b

c d

)

is given by
det(A) = a · d − c · b.

The determinant det(A) of the 3× 3 matrix

A =




a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3




is given by

det(A) = a1,1 ·a2,2 ·a3,3 + a1,2 ·a2,3 ·a3,1 + a1,3 ·a2,1 ·a3,2

− a3,1 ·a2,2 ·a1,3 − a3,2 ·a2,3 ·a1,1 − a3,3 ·a2,1 ·a1,2.
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Determinants of n × n Matrices with n ≥ 3

We compute the determinant of an n × n matrix A = (aij)i ,j=1,...,n

A =




a1,1 a1,2 a1,n

a2,1 a2,2 . . . a2,n
...

...
. . .

...
ai ,1 ai ,2 . . . ai ,n
...

...
. . .

...
an,1 an,2 . . . an,n




by expanding with respect to the 1st column:

det(A) =
n∑

j=1

(−1)i+1 · ai1 · det(Ci1),

where Ci1 is the (n − 1)× (n − 1) matrix obtained by deleting from A
the 1st column and the ith row.
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Exercises: Determinants of Matrices

Ex. 1.2 (Determinants of 2× 2 and 3× 3 Matrices):
Compute the determinants of the following two matrices

A =

(
1 2
3 4

)
and B =




1 2 3
4 5 6
7 8 9


 .

Ex. 1.3 (General Formula for the Determinant):
Use the expansion with respect to the first column formula from page 17
to compute the determinant of

B =




1 2 3
4 5 6
7 8 9


 .
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Eigenvalues and Eigenvectors

Let A be an n × n matrix. A real number λ is called an eigenvalue of A if
there exists a non-zero vector x such that

Ax = λ x. (3)

x is then called an eigenvector of A corresponding to the eigenvalue λ.

Interpretation: (3) means that x is mapped onto a multiple of itself.

To find the n eigenvalues λ1, λ2, . . . , λn and the corresponding
eigenvectors of an n × n matrix A:

1 Compute the characteristic polynomial (of degree n in λ)

p(A, λ) = det(λ I− A) = 0 (I is the identity matrix.)

and find the zeros/roots to get the n eigenvalues λ1, λ2, . . . , λn of A.
2 For each eigenvalue λi solve the linear system

Axi = λi xi or equivalently (λi I− A) xi = 0

to find the eigenvectors xi corresponding to λi .
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Ex. 1.4: Eigenvectors and Eigenvalues

Consider the symmetric matrix

A =




3
2 0 1

2

0 3 0

1
2 0 3

2


 ,

1 Compute the eigenvalues λ1 ≥ λ2 ≥ λ3 and the corresponding
eigenvectors x1, x2, x3 of A (where Axi = λi xi , i = 1, 2, 3).

2 Wait with this part for the next two slides until we have discussed
this: Find an orthogonal matrix S such that

S−1 AS = S′ AS =




λ1 0 0
0 λ2 0
0 0 λ3


 , (4)

with λ1 ≥ λ2 ≥ λ3. Execute the matrix multiplication in (4) to verify
that you have chosen S correctly.
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Transformation of a Symmetric Matrix to Diagonal Form I

Let A be a real symmetric n × n matrix, i.e. A = A′.

(i) Then A has n real eigenvalues (counted with multiplicities).

(ii) The eigenvectors to different eigenvalues are orthogonal.

(iii) For an eigenvalue with multiplicity k > 1 (i.e. it appears k-times as a
root of the characteristic polynomial) we find k linearly independent
eigenvectors. These k eigenvectors can be chosen orthogonal
(perpendicular) to each other.

Consequence: A real symmetric matrix has n real eigenvalues
λ1, λ2, . . . , λn and n corresponding orthogonal eigenvectors x1, x2, . . . , xn.

In addition, we may demand that ‖x1‖2 = ‖x2‖2 = . . . = ‖xn‖2 = 1,
i.e. the eigenvectors are normalized (have all length one).
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Transformation of a Symmetric Matrix to Diagonal Form II

Let A be a real symmetric n × n matrix, i.e. A = A′,
and let λ1, λ2, . . . , λn be its n real eigenvalues, and
let x1, x2, . . . , xn be n corresponding normalized orthogonal eigenvectors.

From the equations Ax1 = λ1 x1, . . . ,Axn = λn xn, we have

A




...
...

...
x1 x2 · · · xn

...
...

...




︸ ︷︷ ︸
= S

=




...
...

...
x1 x2 · · · xn

...
...

...




︸ ︷︷ ︸
= S




λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λn




︸ ︷︷ ︸
= D

,

and the matrix S is orthogonal, i.e. S−1 = S′.

Multiplying AS = SD from the right with S−1 = S′, we find

S′ AS = S′ S︸︷︷︸
=I

D = ID = D and thus S′ AS = D.
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Random Variables and Samples

Let X and Y be random variables. (A random variable is a feature that
can be sampled at objects and whose value depends on chance.)

In this course, all random variables are metric, i.e. the values of the
random variable are real numbers and the difference of two values of the
random variable has meaning.

Examples of Metric Random Variables: price of a product, height,
temperature, mark in percentage.

Random variables are measured in populations.

Sample: A sample is a randomly drawn collection of objects e1, e2, . . . , en

from the population on which we measure X : xi = value of X on object ei .

Example: X = mark of students in percentage. Population = all students.
Sample of 3 students e1, e2, e3 with marks x1 = 80, x2 = 90, x3 = 70.
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Expectation Value and Mean

Expectation Value: The expectation value µX = E(X ) of a random
variable X is the value that X assumes on average.

Mean (Value): In a sample of objects e1, e2, . . . , en with values
x1, x2, . . . , xn for the random variable X , the expectation value E (X ) is
estimated by the mean (value):

x =
1

n
(x1 + x2 + . . . + xn) =

1

n

n∑

i=1

xi .

Example: X = mark of students in percentage. Sample of 3 students
with marks x1 = 80, x2 = 90 and x3 = 70. E(X ) is estimated by

x =
1

3
(x1 + x2 + x3) =

1

3
(80 + 90 + 70) = 80.
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Variance and Standard Deviation of a Random Variable

Variance: The variance Var(X ) = σ2
X of a random variable X is defined by

Var(X ) = E
([

X − E(X )
]2)

= E(X 2)−
[
E(X )

]2

and describes the (squared) average variation of the values of X around
the expectation value E(X ).

Standard Deviation: The standard deviation

σX =
√

Var(X )

describes the average variation of the values of X around E(X ).
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Estimating Variance and Standard Deviation

Estimating Var(X ) and σX : In a sample of objects e1, e2, . . . , en with
values x1, x2, . . . , xn for the random variable X , the variance Var(X ) = σ2

X

and the standard deviation σX are estimated by the empirical variance
σ̂X

2 = s2
X the empirical standard deviation σ̂X = sX , defined by

σ̂X
2 = s2

X =
1

n − 1

[
(x1 − x)2 + . . . + (xn − x)2

]
=

1

n− 1

n∑

i=1

(xi − x)2

and σ̂X = sX =
√

s2
X , respectively.

Example: X = mark of students in percentage. Sample of 3 students with
marks x1 = 80, x2 = 90 and x3 = 70. E(X ) is estimated by x = 80. Hence,

σ̂X
2 = s2

X =
1

3− 1

[
(80 − 80)2 + (90− 80)2 + (70− 80)2

]
=

200

2
= 100

and σ̂X = sX =
√

100 = 10.
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Centered and Standardized Random Variables

By defining for a random variable X with E(X ) = µX and Var(X ) = σ2
X

W = X − E(X ) = X − µX and Z =
X − E(X )

σX

=
X − µX

σX

(5)

we obtain:

a centered random variable W with E(W ) = 0 and Var(W ) = σ2
X ,

a standardized random variable Z with E(Z ) = 0 and Var(Z ) = 1

Centering and Standardizing Data from a Sample: In a sample of
objects e1, e2, . . . , en with values x1, x2, . . . , xn for the random variable X ,
with mean value x and empirical standard deviation sx we compute
centered data and standardized data via

wi = xi − x and zi =
xi − x

sX
, respectively.
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Example: Centered and Standardized Data

Example: X = mark of students in percentage. Sample of 3 students
with marks x1 = 80, x2 = 90 and x3 = 70. We found x = 80 and sX = 10.

The centered data of the centered random variable W = X − µX is:

w1 = x1 − x = 80− 80 = 0

w2 = x2 − x = 90− 80 = 10

w3 = x3 − x = 70− 80 = −10

The standardized data of the standardized random variable
Z = (X − µX )/σX is given by:

z1 =
x1 − x

sx
=

80− 80

10
= 0

z2 =
x2 − x

sx
=

90− 80

10
= 1

z3 =
x3 − x

sx
=

70− 80

10
= −1
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Covariance of Random Variables

Covariance: The covariance Cov(X ,Y ) of two random variables X and Y

is defined by

Cov(X ,Y ) = E
(
[X − E(X )]·[Y − E (Y )]

)
.

The covariance measures the correlation of the two random variables.

Estimating the Covariance from a Sample: In a sample of objects
e1, e2, . . . , en with values x1, x2, . . . , xn and the mean x for the random
variable X and values y1, y2, . . . , yn and the mean y for the random
variable Y , the covariance Cov(X ,Y ) is estimated by the empirical

covariance Ĉov(X ,Y ), defined by

Ĉov(X ,Y ) =
1

n − 1

[
(x1 − x)·(y1 − y) + . . .+ (xn − x)·(yn − y)

]

=
1

n − 1

n∑

i=1

(xi − x)·(yi − y)
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Correlation Coefficient

Correlation Coefficient: A scale-independent measure of the correlation
of two random variables X and Y is given by the correlation coefficient

̺(X ,Y ) =
Cov(X ,Y )

σX ·σy

Estimating the Correlation Coefficient from a Sample: The
correlation coefficient is estimated by the empirical correlation coefficient

̺̂(X ,Y ) =
Ĉov(X ,Y )

sx ·sY

where Ĉov(X ,Y ), sX and sY are the empirical covariance and empirical
variances of X and Y , respectively, computed from the sample.
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Ex. 1.5: Mean, Variance, Covariance and Correlation

Consider the random variables X = mark of students in percentage and
Y = age of the student. In a sample of 3 students we found the values

x1 = 80, x2 = 90, x3 = 70 and y1 = 24, y2 = 23, y3 = 22

for X and Y , respectively. Estimate the covariance and the correlation
coefficient of X and Y from the sample.
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Manipulating Expectation Value, Variance & Covariance

The expectation value is linear, i.e. for two random variables X and Y and
real numbers a and b we have

E(a·X + b ·Y ) = a · E(X ) + b · E(Y ). (6)

Ex. 1.6 (Formal Manipulations of Expectation Values):
Let X , Y and W be random variables with expectation values µX = E(X ),
µY = E (Y ) and µW = E (W ) and standard deviations σX , σY and σW ,
respectively. Let a, b and c be real numbers. Use (6) to verify the
following relations:

E
([

a·(X − µX ) + b ·(Y − µY )
]
·
[
c ·(W − µW )

])

= a·c · Cov(X ,W ) + b ·c · Cov(Y ,W ),

Var(a·X ) = a2 · Var(X ).
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Topic 2: Factor Analysis
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Idea of Factor Analysis

Aim: The aim of factor analysis is to explain m measured variables
through a few common factors in a sufficiently accurate but simple way.

Factor analysis seeks to represent the information contained in the
measured variables in a more concise way through fewer common factors.

Example (Intelligence Tests):

A large number of questions have to be answered by the test persons.

Can the responses be explained through the one factor intelligence?

Or should they be explained through a number of different abilities
(factors), e.g. linguistic aptitude, mathematical aptitude, memory,
abstract thinking, etc.?

Note: There has to be some compromise in factor analysis, as more
simplification means usually less accuracy.
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Example & Problem for our Toy Exercise

Problem: Stiftung Warentest evaluates 5 types of cereal: e1, e2, . . . , e5.

For each type of cereal, Stiftung Warentest does a chemical analysis and
determines the average market price and the average shelf live.

For comparability the results are converted into a metric rating from 1 to 5
for the following categories:

Vitamins: The higher the rating the higher the vitamin content.

Calories: The higher the rating the higher the number of calories.

Shelf live/Sell-by date: The higher the rating the longer the shelf live.

Price: The higher the rating the higher the price.

Research Question: Can these ratings be explained by some common
factors F1,F2, . . ., such as healthiness and cost effectiveness?
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Possible Diagram for Example & Toy Exercise

calories

+

+

−

−

vitamins

shelf live date

price

healthiness

cost effectiveness

The plus and minus signs at the arrows have to be read as follows:
The higher the healthiness the higher the (rating for) vitamin count.
The higher the healthiness the lower the (rating the) calorie count.
The higher the cost effectiveness the higher the (rating for) shelf live.
The higher the cost effectiveness the lower the (rating for) price.
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Possible Model Equations for Example & Toy Exercise

Metric Measured Variables:

X1 = rating for vitamins

X2 = rating for calories

X3 = rating for shelf live date

X4 = rating for price

Factors/Metric Latent Variables:

F1 = healthiness,

F2 = cost effectiveness

Errors/Effects not Reflected in
the Model: U1, U2, U3, U4

Model Equations for Diagram:
We formulate our model equations
for the standardized variables
Zj = (Xj − E(Xj))/σXj

.

Z1 = a1,1 · F1 + U1

Z2 = a2,1 · F1 + U2

Z3 = a3,2 · F2 + U3

Z4 = a4,2 · F2 + U4

Based on the diagram we expect
a1,1>0, a2,1<0, a3,2>0, a4,2<0.

Generally, for each standardized metric variable we postulate the model:

Zj = aj1 · F1 + aj2 · F2 + . . .+ ajp · Fp + Uj , j = 1, 2, 3, 4
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Model Equations for Example & Toy Exercise

Model: For the standardized variables Zj = (Xj − E(Xj))/σXj
, we

postulate a linear model with p < 4 factors F1,F2, . . . ,Fp

Zj = aj1 · F1 + aj2 · F2 + . . .+ ajp · Fp + Uj , j = 1, 2, . . . , 4, (7)

that explains Zj in terms of the unknown common factors F1,F2, . . . ,Fp.

aj1, aj2, . . . , ajp are the coefficients (called factor loadings) in (7).

U1,U2, . . . ,Up are called unique factors and cover random errors and
effects not explained by the common factors.

Important:

The number p of factors and the factors themselves are unknown, and
it is the aim of exploratory factor analysis to determine these!

After the factor analysis, we have to interpret the factors!

In the diagram and model equations on pages 37 and 38 we have
shown one possible result of the factor analysis for our toy example.
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Matrix Model Equations for Example & Toy Exercise

We write (7) as a matrix equation z = A f + u (⇔ z′ = f ′A′ + u′) with

z =




Z1
...

Z4


, A =




a1,1 · · · a1,p
...

...
a4,1 · · · a4,p


, f =




F1
...

Fp


, u =




U1
...

U4


.

For the ith type of cereal ei , we have a standardized data vector

z′i = (zi1, zi2, . . . , zi4)

and a corresponding common factor value vector fi and unique factor
value vector ui

f ′i = (fi1, fi2, . . . , fip) and u′
i = (ui1, ui2, . . . , ui4)

and hence a linear system (of equations)

zi = Afi + ui ⇔ z′i = f ′iA
′ + u′

i . (8)
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Linear System for Example & Toy Exercise

From (8) we get the linear system (of equations) for the data:

Z = FA′ + U

where A is the factor loading matrix defined on page 40 and

Z =




z1,1 · · · z1,4
...

...
z5,1 · · · z5,4



← z′1 = standardized data for cereal e1

...
← z′5 = standardized data for cereal e5

F =




f1,1 · · · f1,p
...

...
f5,1 · · · f5,p



← f ′1 = values of common factors for cereal e1

...
← f ′5 = values of common factors for cereal e5

U =




u1,1 · · · u1,4
...

...
u5,1 · · · u5,4



← u′

1 = values of unique factors for cereal e1
...

← u′
5 = values of unique factors for cereal e5
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Ex. 2.1: Standardized Data in Example & Toy Exercise

Given the rating for vitamins (= X1), rating for calories (= X2), rating for
shelf live date (= X3) and rating for price (= X4) for 5 types of cereal in
the following table, compute the data for the corresponding standardized
variables Z1, . . . ,Z4 and write down the standardized data matrix:

Cereal X1 (Vitamins) X2 (Calories) X3 (Shelf Live) X4 (Price)

e1 4 2 3 3

e2 2 4 3 3

e3 3 3 3 3

e4 3 3 2 4

e5 3 3 4 2
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Ex. 2.2: Some Model Equations in the Toy Exercise

Write down the model equations for each random variable Xj for cereals e1

and e2. Inspect the model equations:

What are the unknowns?

Compare the model equations with the equations in (multiple)
regression. Where does the difference lie?
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Observation for the Example & Toy Exercise

Our linear system in the toy example

Z︸︷︷︸
5×4

= F︸︷︷︸
5×p

A′
︸︷︷︸
p×4

+ U︸︷︷︸
5×4

does usually not have square matrices; hence the given matrices cannot be
invertible.

Problem: We only know Z, but need to determine everything else!

Approach: We need to invest more information about the given data:

If the standardized variables Z1,Z2, . . . ,Z4 can be explained by a few
common factors, then Z1,Z2, . . . ,Z4 must be correlated.

We will use the correlation matrix of our data for Z1,Z2, . . . ,Z4 to
compute the number of factors p, the factor loading matrix A and the
factor value matrix F.
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Factor Analysis: Setup & Model for the Random Variables

Given: Metric variables X1,X2, . . . ,Xm that are correlated. Zi is the
standardized variable corresponding to Xi , i = 1, 2, . . . ,m.

Aim: X1,X2, . . . ,Xm shall be explained through a few common factors
F1,F2, . . . ,Fp with p < m.

Model: The postulated linear model is

Zj = aj1 ·F1 + aj2 ·F2 + . . .+ ajp ·Fp + Uj =

p∑

k=1

ajk ·Fk + Uj , (9)

j = 1, 2, . . . ,m, where:

The Uj is the unique factor of Zj that captures random variation and
effects not represented by the common factors.

The coefficients aj1, . . . , ajp are the factor loadings. They are unique
for each random variable Zj .
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Factor Analysis: Setup & Model for the Sampled Data I

Sampled Data: data for X1,X2, . . . ,Xm for n objects e1, e2, . . . , en:
xi1, xi2, . . . , xim = data for X1,X2, . . . ,Xm for object ei

Standardized Data: zi1, zi2, . . . , zim is the corresponding standardized
data for object ei ,

zij =
xij − xj

sj
, xj =

1

n

n∑

k=1

xkj , sj =

√√√√ 1

n − 1

n∑

k=1

(xkj − xj)2

for the standardized variables Zj = (Xj − E (Xj))/σXj
, j = 1, 2, . . . ,m.

Standardized Data Matrix:

Z =




z1,1 · · · z1,m
...

...
zn,1 · · · zn,m



← standardized data for object e1
...
← standardized data for object en

↑ ↑
Z1 . . . Zm
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Factor Analysis: Setup & Model for the Sampled Data II

Model: The linear model (9) results in a matrix equation for the data:

Z︸︷︷︸
n×m

= F︸︷︷︸
n×p

A′
︸︷︷︸
p×m

+ U︸︷︷︸
n×m

F =




f1,1 · · · f1,p
...

...
fn,1 · · · fn,p



← values of common factors for object e1
...
← values of common factors for object en

↑ ↑
F1 . . . Fp

A =




a1,1 · · · a1,p
...

...
am,1 · · · am,p



← factor loadings for random variable Z1
...
← factor loadings for random variable Zm

↑ ↑
F1 . . . Fp
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Factor Analysis: Setup & Model for the Sampled Data III

U =




u1,1 · · · u1,m
...

...
un,1 · · · un,m



← values of unique factors for object e1
...
← values of unique factors for object en

↑ ↑
Z1 . . . Zm

Assumptions on the Factor Analysis Model:

The factors Fj are standardized,
i.e. E(Fj) = 0 and Var(Fj) = 1 for all j = 1, 2, . . . , p.

The unique factor are centered, i.e. E(Uj) = 0 for all j = 1, 2, . . . ,m.

Ui and Uj are uncorrelated, i.e. Cov(Ui ,Uj) = 0 if i 6= j .

Fi and Fj are uncorrelated, i.e. Cov(Fi ,Fj ) = 0 if i 6= j .

Ui and Fj are uncorrelated, i.e. Cov(Ui ,Fj) = 0.
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Correlation Matrix of the Data

For the standardized data matrix

Z︸︷︷︸
n×m

=




z1,1 · · · z1,m
...

...
zn,1 · · · zn,m


 with Z′

︸︷︷︸
m×n

=




z1,1 · · · zn,1
...

...
z1,m · · · zn,m




the correlation matrix R = (rij)i , j=1,2...,m of the data of the random
variables X1,X2, . . . ,Xm is given by:

R =
1

n − 1
Z′ Z

From matrix multiplication, the (i , j)th entry of R = (rij )i ,j=1,...,m is

rij =
1

n − 1

n∑

k=1

zki ·zkj .
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Understanding the Correlation Matrix of the Data

The entry rij of the correlation matrix R is really an estimator for the
correlation coefficient ̺(Xi ,Xj) of Xi and Xj :

rij =
1

n − 1

n∑

k=1

zki ·zkj =
1

n − 1

n∑

k=1

xki − xi

si
· xkj − xj

sj

=
1

n−1

∑n
k=1(xki − xi)·(xkj − xj)

si · sj

=





s2
i

si · si
= 1 = Var(Zi ) if i = j ,

Ĉov(Xi ,Xj)

si · sj
= ̺̂(Xi ,Xj) if i 6= j .

Ex. 2.3 (Correlation Matrix): Compute the correlation matrix for our
toy example.
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Test Whether Correlations are Significant

Important: A factor analysis makes only sense if the variables
X1,X2, . . . ,Xm are correlated, that is, if some of the entries rij , i 6= j , of
the correlation matrix R differ significantly from zero.

rij models the correlation coefficient of Xi and Xj defined by

̺ij = ̺(Xi ,Xj) =
Cov(Xi ,Xj)

σXi
· σXj

Hypothesis testing to determine whether ̺ij 6= 0:
Null hypothesis H0: ̺ij = 0
Alternative hypothesis H1: ̺ij 6= 0

t =

√
n − 2 rij√
1− r2

ij

follows a t-distribution with n − 2 degrees of freedom.

For the significance level α, determine the value tn−2,α/2 from the
t-distribution: Reject H0, if |t| > tn−2,α/2; otherwise accept H0.
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Derivation of the Main Theorem of Factor Analysis I

Model: Z = FA′ + U ⇔ Z′ = AF′ + U′ (10)

Correlation Matrix: R =
1

n − 1
Z′ Z (11)

In (11) substitute Z′ and Z by the equations (10) of our model:

R =
1

n − 1
(AF′ + U′) (FA′ + U)

=
1

n − 1

(
A F′ F︸︷︷︸

= (n−1)I

A′ + A F′ U︸︷︷︸
= 0

+U′ F︸︷︷︸
= 0

A′ + U′ U︸︷︷︸
= (n−1)Ψ

)

= AA′ + Ψ

F′ F = (n − 1) I follows from Var(Fj ) = 1 and Cov(Fi ,Fj ) = 0 if i 6= j .
(I is the identity matrix with 1 on the diagonal and 0 everywhere else.)

F′ U = 0 and U′ F = 0 follow from Cov(Fi ,Uj) = 0 for all i and j .

Ψ = 1
n−1 U′ U is the covariance matrix of the data for U1,U2, . . . ,Um.
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Derivation of the Main Theorem of Factor Analysis II

1
n−1 F′ F = I is the covariance matrix of the factors F1,F2, . . . ,Fp, and it
equals the identity matrix as the factors are standardized and uncorrelated.

Because of Cov(Ui ,Uj) = 0 if i 6= j , the covariance matrix Ψ of the unique
factors U1,U2, . . . ,Um is diagonal with diagonal entries ψii = Var(Ui):

Ψ =
1

n − 1
U′ U =




Var(U1) Cov(U1,U2) · · · Cov(U1,Um)

Cov(U2,U1) Var(U2)
...

...
...

. . .
...

Cov(Um,U1) Cov(Um,U2) · · · Var(Um)




=




ψ1,1 0 · · · 0

0 ψ2,2
. . .

...
...

. . .
. . . 0

0 · · · 0 ψm,m



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Main Theorem of Factor Analysis & Program of Work

Main Theorem of Factor Analysis: The correlation matrix R of the
measured variables X1,X2, . . . ,Xm satisfies the equation:

R = AA′ + Ψ

Program of Work:

1 Principal Component Analysis for R: We ignore Ψ and solve
R = AA′ to determine/approximate the factor loading matrix A.

or

Principal Component Analysis for Rh: We estimate Ψ and then we
solve Rh = AA′ for the reduced correlation matrix Rh = R−Ψ and
determine/approximate the factor loading matrix A.

2 Finally we determine the values of the factors with the help of the
model equation Z = FA′ + U.
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Reduced Correlation Matrix and Communalities

As the covariance matrix Ψ of the unique factors U1,U2, . . . ,Um is
diagonal, the reduced correlation matrix

Rh = R−Ψ

and R are identical apart from the diagonal entries.

Communalities: The diagonal entries rjj of R are (see next slide):

rjj = Var(Zj) =

p∑

k=1

a2
jk

︸ ︷︷ ︸
= h2

j

+ψjj = h2
j + ψjj ⇔ rjj − ψjj = h2

j

The number h2
j =

∑p
k=1 a2

jk is called the communality of Zj .

h2
j describes the part of the variance of Zj that has been explained by

the factors F1,F2, . . . ,Fp.

h2
j = jth diagonal entry of Rh = R−Ψ.
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Derivation of the Communalities

From R = AA′ + Ψ we obtain for the diagonal entries of R

1 = rjj = Cov(Zj ,Zj) = Var(Zj) = E



[

p∑

k=1

ajk ·Fk + Uj

]2



= E

(
p∑

i=1

p∑

k=1

aji ·ajk ·Fi ·Fk + 2

p∑

k=1

ajk ·Fk ·Uj + U2
j

)

=

p∑

i=1

p∑

k=1

aji ·ajk · E(Fi ·Fk) + 2

p∑

k=1

ajk · E(Fk ·Uj) + E(U2
j )

=

p∑

i=1

p∑

k=1

aji ·ajk · Cov(Fi ,Fk)︸ ︷︷ ︸
=0 if i 6=k
=1 if i=k

+2

k∑

k=1

ajk · Cov(Fk ,Uj)︸ ︷︷ ︸
= 0

+ Var(Uj)︸ ︷︷ ︸
=ψjj

=

p∑

k=1

a2
jk

︸ ︷︷ ︸
= h2

j

+ψjj , since Fi ,Fj are standardized and Uj is centered.

Dr. Kerstin Hesse (HHL) Structural Equation Modeling HHL, June 1-2, 2012 56 / 149



Communalities Must be Estimated

As the ajk are yet unknown, the communalities h2
j must be estimated with

the help of the correlation matrix R = (rij).

1 Maximal absolute correlation (coefficient) of Zj with all other
variables: Estimate the communality h2

j by

ĥj

2
= max

k=1,...,m,
k 6=j

|rjk |.

2 Multiple determination coefficient: Compute the inverse matrix
R−1 = (qij) of the correlation matrix R and estimate h2

j by

ĥj

2
= 1− 1

qjj

,

where qjj is the jth diagonal entry of R−1.

3 An iterative scheme (not discussed here).

Ex. 2.4 (Communalities and Reduced Correlation Matrix): For our
toy example, estimate the communalities with method 1 and estimate Rh.
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Computation of the Factor Loading Matrix with PCA I

1 Principal Component Analysis for solving R = AA′

2 Principal Component Analysis for solving R̂h = AA′ with
R̂h = estimator of the reduced correlation matrix Rh

R and R̂h are both symmetric; and for both cases we use the same
method, called principal component analysis (PCA), described below.

Step 1: Compute the m real eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λm and m

corresponding orthonormal eigenvectors b1,b2, . . . ,bm of R (or R̂h).

More precisely, we have Rbj = λj bj (or R̂h bj = λj bj) and ‖bj‖2 = 1 for
j = 1, 2, . . . ,m, and b′

j bk = 0 if j 6= k.

Step 2 (Initial Choice of A): Let λ1 ≥ λ2 ≥ . . . ≥ λq > 0 (positive
eigenvalues), and let 0 ≥ λq+1 ≥ . . . ≥ λm (non-positive eigenvalues).
Then choose A preliminarily as:

A =
(√

λ1 b1,
√
λ2 b2, . . . ,

√
λq bq

)
(m × q matrix)
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Computation of the Factor Loading Matrix with PCA II

Step 3 (Reduction of A to Include Only Significant Factors):

A =
(√

λ1 b1,
√
λ2 b2, . . . ,

√
λp bp

)
(m × p matrix)

where p ≤ q is determined as follows (different methods possible):

Cumulative Variance Criterion: Determine p as the smallest integer
such that at least W% of the variance are explained through the
factors F1,F2, . . . ,Fp, i.e.

Var(Zj) =

p∑

k=1

a2
jk ≥

W

100
for j = 1, . . . ,m.

Kaiser Criterion: λ1 ≥ . . . ≥ λp > 1 and 1 ≥ λp+1 ≥ . . . ≥ λm

Scree Test: Plot (j , λj ), j = 1, 2, . . . ,m, where λ1 ≥ λ2 ≥ . . . ≥ λm,
and connect the dots. Let j = p be the largest integer before the
curve has a sharp bend.
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Ex. 2.5: Estimating the Factor Loading Matrix with PCA

Estimate the factor loading matrix A for our toy example using the Kaiser
criterion. Write down the explicit model equations and interpret them.
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Excursion: Derivation of the Formula for A – Part I

From the eigenvalue-eigenvector relationships Rbj = λj bj , j = 1, 2, . . . ,m,

R (b1,b2, . . . ,bm)︸ ︷︷ ︸
= B

= (λ1 b1, λ2 b2, . . . , λm bm)︸ ︷︷ ︸
= BD

,

where D = Diag(λ1, λ2, . . . , λm) is the diagonal matrix with the
eigenvalues λ1, λ2, . . . , λm on the diagonal and zeros everywhere else.

As the matrix B with the eigenvectors as columns is orthogonal (because
the eigenvectors are orthonormal), multiplying with B′ from the right yields

RB = BD ⇔ R = R BB′
︸︷︷︸
= I

= BDB′.

We now omit all negative eigenvalues and only use the positive eigenvalues
λ1 ≥ . . . ≥ λq > 0:

R ≈ BD̃B′ with D̃ = Diag(λ1, λ2, . . . , λq, 0, . . . , 0︸ ︷︷ ︸
m−q

) (12)
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Excursion: Derivation of the Formula for A – Part II

As the non-zero diagonal entries in D̃ = Diag(λ1, λ2, . . . , λq, 0, . . . , 0) are
all positive, we can draw the root

D̃ = D̃1/2 D̃1/2 with D̃1/2 = Diag(
√
λ1,
√
λ2, . . . ,

√
λq, 0, . . . , 0︸ ︷︷ ︸

m−q

) = (D̃1/2)′

Substituting D̃ = D̃1/2 D̃1/2 in (12), we find

R ≈ BD̃B′ = BD̃1/2 D̃1/2 B′
︸ ︷︷ ︸

=(B eD1/2)′

= (BD̃1/2
︸ ︷︷ ︸

= eA

) (BD̃1/2
︸ ︷︷ ︸

= eA

)′ = Ã Ã′

We compute Ã = BD̃1/2 =
(√

λ1 b1, . . . ,
√
λq bq, 0bq+1, . . . , 0bm

)

=
(√

λ1 b1, . . . ,
√
λq bq︸ ︷︷ ︸

m×q

, 0, . . . ,0︸ ︷︷ ︸
m×(m−q)

)

and ‘simplify’ Ã by dropping the last m − q columns that are zero vectors:

A =
(√

λ1 b1, . . . ,
√
λq bq

)
(m × q matrix).
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Computation of the Values of the Factors

Model: Z′
︸︷︷︸
m×n

= A︸︷︷︸
m×p

F′
︸︷︷︸
p×n

+ U′
︸︷︷︸
m×n

⇔ Z = FA′ + U

U contains the effects not explained through the linear model FA′.
We want the entries of U to be as small as possible.

For p < m the equation Z′ = AF′ does usually not have a solution.

Least Squares Approach: We try to find F such that Z′ − AF′ is as
close to the zero matrix as possible. Multiply Z′ = AF′ from the left by A′

A′ Z′ = A′ A︸︷︷︸
p×p

F′,

where we know that A′ A is invertible because rank(A) = p. Hence

F′ = (A′ A)−1A′ Z′.

Ex. 2.6 (Factor Values): Compute the factor values for our toy example.
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Interpretation of the Values of the Factors

For the kth object ek , we have a vector (fk1, fk2, . . . , fkp) of factor values:

standardized jth random variable
Zj measured for kth object ek :

zkj = aj1 · fk1 + aj2 · fk2 + . . .+ ajp · fkp

By assumption, the factors are standardized: E(Fj) = 0 and Var(Fj) = 1.

Interpretation of the factor values of object k:

If fki = 0 then the effect of factor Fi on object ek is average.

If fki > 0 then the effect of factor Fi on object ek is above average.

If fki < 0 then the effect of factor Fi on object ek is below average.

Ex. 2.7 (Interpretation): Interpret the factor values for our example.
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Outlook: Method of Factor Rotation

We have constructed a m × p factor loading matrix A such that

R = AA′ + Ψ̂,

where Ψ̂ is an approximation of the diagonal correlation matrix Ψ of the
unique factors (note that usually the approximation Ψ̂ will not be
diagonal).

If we replace A by Ã = AT, where T is an p × p rotation matrix
(i.e. det(T) = 1 and T′ T = TT′ = I) then

Ã Ã′ + Ψ̂ = (AT) (AT)′ + Ψ̂ = A TT′
︸︷︷︸

=I

A + Ψ̂ = AA′ + Ψ̂ = R

Clearly, Ã = AT is also a m × p factor loading matrix. (The values of the
factors have to be recomputed for this new factor loading matrix).
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Outlook: Why is Factor Rotation Useful?

Why can a suitable rotation of the factor loading matrix be useful?

The entries of the factor loading matrix are the coefficients in

Zj = aj1 · F1 + aj2 · F2 + . . . + ajp · Fp + Uj , j = 1, 2, . . . ,m.

These equations are best interpreted if the aij are either close to zero
or close to one.

By our construction we are likely to get many coefficients satisfying
0.3 ≤ |aij | ≤ 0.7 and these are difficult to interpret.

By choosing a suitable rotation matrix T we may obtain more
coefficients in the new factor loading matrix Ã = AT that are either
close to zero or close to one and thus are better to interpret.
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Topic 3: Introduction to Structural Equation Modeling

Structural (Inner) Model

causal (cause-effect) relationships

exogenous and endogenous latent variables

regression equations of the structural (inner) model

(Outer) Measurement Models

formative measurement model/block

reflective measurement model/block

Approaches to Structural Equation Modeling

LISREL (linear structural relationships) – discussed in detail as Topic 4

PLS (partial least squares) path modeling – discussed in detail as
Topic 5
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Aim of Structural Equation Modeling: Causal Modeling

Aim: Structural equation modeling (SEM) aims at describing causal
relationships of latent (non-measurable) variables in a linear model.

Causal Relationship: A causal relationship is a cause-effect relationship.
Depicted graphically the arrow points from the cause to the effect.

Latent Variables: A latent variable is a (dependent or independent)
variable in a model that (usually) cannot be directly measured.

Example (Causal Relationships for Margarine):

The more widely a margarine can be
used, the more attractive it is.

The more attractive a margarine is, the
more likely it is to be bought.

The more widely a margarine can be
used, the more likely it is to be bought.

intention to buy

+

+

+ usability

attractiveness
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Exogenous and Endogenous Latent Variables

Example (Causal Relationships for Margarine) Continued:

The latent variables are: attractiveness, usability and intention to buy.

The name latent refers to the fact that they are variables for ‘abstract
concepts’ that (usually) cannot be directly measured.

The plus signs at the arrows indicate that we have a positive correlation. If
we would replace ‘intention to buy’ by ‘disinclination to buy’, then we
would get negative signs on the two arrows pointing to that latent variable
(e.g. ‘The higher the attractiveness the lower the disinclination to buy.’).

Exogenous and Endogenous Latent Variables:
Exogenous latent variables are independent latent variables.
Endogenous latent variables are dependent latent variables.

Example Continued: Usability is an exogenous latent variable.
Attractiveness and intention to buy are endogenous latent variables.
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Example: Modeling the Structural (Inner) Model I

Assumptions: All latent variables can be represented on a metric scale.

Model: Regression type equations model the causal relationships.

Example (Causal Relationships for Margarine) Continued:

usability
η

η

ξ
γ

ζ

ζ

1
1

1

2
2

β21

21

γ11

attractiveness

intention to buy

Linear model equations:

η1 = γ1,1 ξ1 + ζ1

η2 = β2,1 η1 + γ2,1 ξ1 + ζ2

where ζ1, ζ2 are error terms.

Rules for denoting the coefficients γ1,1, γ2,1 and β2,1:
γ is used for arrows pointing from an exogenous to an endogenous latent
variable. β is used for arrows pointing from an endogenous to another
endogenous latent variable. Indices: The first index is the one of the
affected variable and the second index is the one of the causing variable.
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Example: Modeling the Structural (Inner) Model II

Matrix Equations: We can also write our model in matrix form:
(
η1

η2

)

︸ ︷︷ ︸
= η

=

(
0 0
β2,1 0

)

︸ ︷︷ ︸
= B

(
η1

η2

)

︸ ︷︷ ︸
= η

+

(
γ1,1

γ2,1

)

︸ ︷︷ ︸
= Γ

ξ1 +

(
ζ1
ζ2

)

︸ ︷︷ ︸
= ζ

and shorter
η = Bη + Γ ξ + ζ,

where (notation not restricted to this example):

ξ = vector of exogenous latent variables

η = vector of endogenous latent variables

ζ = vector of error terms for the endogenous latent variables

B = coefficients for the relationships among the endogenous latent
variables (B has always zeros on the diagonal.)

Γ = coefficients for the effects of the exogenous latent variables on
the endogenous latent variables
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Ex. 3.1: Setting up the Structural (Inner) Model

A model for the work of a software programmer on an non-pay-scale salary
is shown in the diagram below. Indicate the various latent variables and
the coefficients and error terms in the diagram, using the rules explained
on pages 71–72. For consistency, number any exogenous (or endogenous)
latent variables from top to bottom. Finally write down the equations for
the structural (inner) model.

intelligence

motivation

initiative

pay / salary
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Summary: Setting up the Structural (Inner) Model

Random Variables:

ξ = (ξ1, . . . , ξs)
′ = vector of exogenous (independent) latent variables ξi

η = (η1, . . . , ηr )
′ = vector of endogenous (dependent) latent variables ηi

ζ = (ζ1, . . . , ζr )
′ = vector of error terms ζi in regression equations for ηi

Linear Regression Equations: The latent variables are related by

ηi = βi1 η1 + βi2 η2 + . . . + βir ηr + γi1 ξ1 + γi2 ξ2 + . . .+ γis ξs + ζi .

(Path) Coefficients in Regression Equations:

Γ = (γij) = r × s matrix with the coefficients γij for the effect of ξj on ηi

B = (βij) = r × r matrix with the coefficients βij for the effect of ηj on ηi ,
where βii = 0 for all i = 1, 2, . . . , r

Structural (Inner) Model in Matrix Form: η = Bη + Γ ξ + ζ
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Reduced Model and Graphic Representation

Reduced Model: We collect all terms involving η on the left-hand side
and solve for η:

η = Bη + Γ ξ + ζ ⇔ η − Bη = Γ ξ + ζ ⇔

(I− B)︸ ︷︷ ︸
= B∗

η = Γ ξ + ζ ⇔ η = (B∗)−1 Γ ξ + (B∗)−1 ζ

Ex. 3.2 (Reduced Model): Write down the reduced model for the
structural (inner) model from Ex. 3.1.

Graphic Representation of the Structural (Inner) Model: It helps to
draw a diagram of the structural model as done in the examples. Rules:

Arrows point from cause to effect.

Latent variables are in circles or ellipsoids (here: rounded boxes)

An arrow points from errors ζi (no box) to the corresponding ηi .
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Assumptions in the Structural (Inner) Model

ηi = βi1 η1 + βi2 η2 + . . . + βir ηr + γi1 ξ1 + γi2 ξ2 + . . .+ γis ξs + ζi .

The latent variables are metric but have no fixed zero point. We choose

E(ξi ) = 0 and E(ηi ) = 0 for all i ,

and this implies automatically for the error terms E(ζi ) = 0 for all i .

For LISREL (but not necessarily for PLS path modeling), we assume that
the independent latent variables ξi and the errors ζj are uncorrelated:

Cov(ξi , ζj ) = E(ξi ζj) = 0 for all i , j .

The error terms ζi may correlate with each other:

ψij = Cov(ζi , ζj ) and ψii = Cov(ζi , ζi ) = Var(ζi)
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Comments on the Structural (Inner) Model

The exogenous latent variables ξi may correlate with each other:

φij = Cov(ξi , ξj ) and φii = Cov(ξi , ξi ) = Var(ξi)

η = Bη + Γ ξ + ζ ⇔ η − Bη = Γ ξ + ζ ⇔

(I− B)︸ ︷︷ ︸
= B∗

η = Γ ξ + ζ ⇔ η = (B∗)−1 Γ ξ + (B∗)−1 ζ

The matrix B∗ will be invertible if we have no redundant equations.

The assumptions on the previous page can also written in vector notation:

E(ξ) = 0, E(η) = 0, E(ζ) = 0,

and for LISREL (but not necessarily for PLS): Cov(ξ, ζ) = 0,
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(Outer) Measurement Models for the Latent Variables

Latent variables (usually) cannot be measured directly, but we assume
that they can be described on a metric scale.

Therefore we need measurement variables (indicator variables) that are
directly linked to the latent variables and that can be measured. We have
two types of measurement models:

Formative Measurement Model:
The measured variables influence
the latent variable.

attractiveness

vitamins

taste

naturalness of the 
ingredients

of the margarine

Reflective Measurement Model:
The latent variable influences the
measured variables.

software programmer

average hours of
work per week

average number of 
lines of code written
per week

motivation of the 
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Rules for Measurement Models

Before we can set up the equations for the measurement models we need
some notation conventions/rules:

Measurement variables are depicted in angular boxes.

Measurement variables for an exogenous latent variable are called Xi .

Measurement variables for an endogenous latent variable are called Yi .

If a latent variable can be measured directly then we may take the
latent variable itself as its own measurement variable.

salary salary of the software
programmer

Actually here the direction of the error does not really matter as
‘salary = salary of the software programmer’.

Non-measurable latent variables should usually have at least two or
better three measurement variables.
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Example: Formative Measurement Model

Y
Y

1

2

3

η 1

λ 11

λ12

λ 13

ε 1

vitamins

taste

naturalness of the 
ingredients

attractiveness
of the margarine

Y

Y
Y

Y

Formative Measurement Model with Regression Equation:

η1 = λY
1,1 (Y1 − µY1

) + λY
1,2 (Y2 − µY2

) + λY
1,3 (Y3 − µY3

) + ε1,

where µY1
, µY2

and µY3
are the expectation values of Y1, Y2 and Y3;

λY
1,1, λ

Y
1,2, λ

Y
1,3 are the coefficients; and ε1 is the error term.
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Example: Reflective Measurement Model

Y

η

λ

λ

1

11

21

2

ε1

ε 2

1

average hours of
work per week

average number of 
lines of code written
per week

motivation of the 
software programmer

Y

Y

Y

Reflective Measurement Model with Factor Analytic Equations:

Y1 − µY1
= λY

1,1 η1 + ε1,

Y2 − µY2
= λY

2,1 η1 + ε2,

where µY1
and µY2

are the expectation values
of Y1 and Y2; λ

Y
1,1, λ

Y
2,1 are the coefficients;

and ε1, ε2 are the error terms.
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More on Measurement Models

Note: So far we saw measurement models for endogenous latent variables.
Measurement models for exogenous latent variables look just the same,
with two notational differences:

Measurement variables are called X1,X2, . . . (instead of Y1,Y2, . . .).

Coefficients get an upper index X instead of Y .

Error terms are called δ1, δ2, . . . (instead of ε1, ε2, . . .).

Latent Variables that can be Measured Directly Without Error:
X

ξδ1 1
1

λ 11
salary salary of the software

programmerX

A reflective measurement model (for the latent exogenous variable ξ1) is

X1 − µX1
= λX

1,1 ξ1 + δ1 = ξ1 with λX
1,1 = 1 and δ1 = 0,

since the (centered) salary X1 − µX1
equals the latent variable ξ1 and since

we assume that it can be measured without error.
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Summary: Setting up a Formative Measurement Model

Linear Regression Equation for an Endogenous Latent Variable ηi :

ηi = λY
i1 (Y1 − µY1

) + λY
i2 (Y2 − µY2

) + . . .+ λY
ip (Yp − µYp

) + εi ,

where: Y1,Y2, . . . ,Yp are the measurement variables related to ηi ;

µY1
, µY2

, . . . , µYp
are the expectation values of Y1,Y2, . . . ,Yp;

λY
ij = coefficient for the effect of (Yj − µYj

) on ηi ; εi = error term for ηi .

Linear Regression Equation for an Exogenous Latent Variable ξi :

ξi = λX
i1 (X1 − µX1

) + λX
i2 (X2 − µX2

) + . . .+ λX
iq (Xq − µXq

) + δi ,

where: X1,X2, . . . ,Xq are the measurement variables related to ξi ;

µX1
, µX2

, . . . , µxq are the expectation values of X1,X2, . . . ,Xq;

λX
ij = coefficient for the effect of (Xj − µXj

) on ξi ; δi = error term for ξi .
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Ex. 3.3: Formative Measurement Model

Starting the numbering of the measurement variables at the top, indicate
the measurement variables, error terms and coefficients in the following
diagram of a formative measurement model. Then write down the
regression equation for the exogenous latent variable ξ2.

2

in baking
properties for use

easy to spread

shelf−by date

useability of a  
margarine

storage 
requirements

ξ
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Summary: Setting up a Reflective Measurement Model

Factor Analytic Equations for Measuring Endogenous Latent
Variables ηj :

Yi − µYi
= λY

i1 η1 + λY
i2 η2 + . . .+ λY

ir ηr + εi (13)

where: µYi
= E(Yi); η1, . . . , ηr are the endogenous latent variables;

λY
ij is the coefficient for the effect of ηj on Yi ; εi is the error of Yi .

Factor Analytic Equations for Measuring Exogenous Latent
Variables ξj :

Xi − µXi
= λX

i1 ξ1 + λX
i2 ξ2 + . . .+ λX

is ξs + δi (14)

where: µXi
= E(Xi); ξ1, . . . , ξs are the exogenous latent variables;

λX
ij is the coefficient for the effect of ξj on Xi ; δi is the error of Xi .

In (13) and (14) usually only a few (often only one) coefficients are 6= 0.
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Ex. 3.4: Reflective Measurement Model

The diagram below shows part of a structural equation model for the
academic success of students. Numbering the measurement variables from
the top to the bottom, complete the diagram of the reflective measurement
model by indicating the variables, error terms and coefficients. Then write
down the factor analytic equations for the measurement variables.

1intelligence

effort

IQ rating

study per week
hours of regular

marks

hours of extra 
study

ξ

ξ 2
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Preparations for Structural Equation Modeling (SEM)

The structural model needs to be based on logical cause-effect
relationships that are supported by evidence!

Structural equation modeling cannot prove a model, but it can only give
empirical support to a model.

It is crucial to determine the correct cause-effect relationships:

Which variables have formative measurement models?

Which variables have reflective measurement models?

If a structural equation model is true, then causal relationships should be
reflected by non-zero covariances between related measurement variables.

Attention: Covariance can only measure linear relationships!

A non-zero covariance can be coincidental, rather than reflect a
relationship!

A non-zero covariance can be caused by a third variable on which the
correlated variables depend and that is not even included in the model!
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Two Approaches to SEM: LISREL and PLS Path Modeling

LISREL (Linear Structural Rela-
tionships):

is based on approximating the
covariance matrix of the
measured variables

usually requires reflective
measurement models

PLS (Partial Least Squares) Path
Modeling:

aims to maximize the variance
explained in the model

can work with both formative
and reflective measurement
models or a mixture of both

Other Differences Between the Models:

LISREL assumes a multivariate normal distribution and allows a good
assessment of the quality of the model (if these distributional
assumptions are satisfied).

PLS path modeling makes less assumptions on the data, but also
allows fewer information about the quality of the model.
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Further Discussion of Structural Equation Modeling Will
be Given Separately for LISREL and PLS Path Modeling

From here we will discuss the two approaches separately:

The two approaches use a somewhat different notation for the model,
i.e. for the combination of the structural (inner) model and the
measurement model.

The two approaches seem to have different strengths and different
weaknesses.

Literature (comments based on my own literature review):

There is not much (statistical) literature on structural equation
modeling (either approach).

LISREL seems to have been statistically well developed, whereas there
seems to be hardly any statistical literature on PLS path modeling.
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Topic 4: LISREL (Linear Structural Relationships)

Setting Up the Structural Equation Model for LISREL

structural (inner) model in LISREL and assumptions

reflective measurement models in LISREL (LISREL normally requires
reflective measurement models/blocks!)

LISREL’s Covariance Approach

(empirical) covariance matrix of the data of the measurement variables

idea of LISREL: compare the empirical with the ‘theoretical’ covariance
matrix to determine the model parameters

example and exercise: solving a simple LISREL model by hand

how LISREL models are solved in practice with the help of a computer

Appendix: LISREL in Matrix Notation

As textbooks and research papers often write down LISREL in the (less

intuitive) matrix notation, this has been included in an appendix.
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General Observations on LISREL

General Assumption: The variables are assumed to follow a multivariate
normal distribution.

In the usual literature the measurement models are assumed to be
reflective, although some references claim that LISREL can also work with
formative measurement models.

Suggestion for Formative Measurement Models: One book made the
suggestion that each measurement variable of a formative measurement
model block could be included in the inner model as a exogenous latent
variable that is then measured directly by itself with coefficient λX = 1.
This is illustrated on the next slide.

A drawback of this idea seems to be that this leads to an increase of the
number of exogenous latent variables in the inner model.
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Converting a Formative to a Reflective Measurement Block

Original formative measurement block for ηi :

Y

η
1

2

i

Y

New exogenous latent variables that are measured directly (reflective):

X1

η i

2 ξ

ξ 1

2

11

λ 22

λ

=1

=1
δ

δ

1

2

X

X

X

We have X1 = Y1, X2 = Y2 and X1 = ξ1 + δ1, X2 = ξ2 + δ2, where the
errors δ1 and δ2 are only 6= 0 if X1 and X2 are not measured exactly.
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Setting up Reflective Measurement Models in LISREL I

Measurement Variables of Endogenous Latent Var. and their Errors:

The measurement variables Y1, . . . ,Yp of the endogenous latent variables
η1, . . . , ηr are numbered consecutively (no relation to the numbering of the
endogenous latent variables η1, . . . , ηr ).

y = (Y1, . . . ,Yp)′ =

(
vector of all measurement variables for the

endogenous latent variables η = (η1, . . . , ηr )
′

)

ε = (ε1, . . . , εp)′ =

(
vector of all measurement errors for the
measurement variables y = (Y1, . . . ,Yp)

′

)

Factor Analytic Equation for an Endogenous Latent Variable:

Yi − µYi
= λY

i1 η1 + λY
i2 η2 + . . .+ λY

ir ηr + εi ,

where: λY
ij is the coefficient for the effect of ηj on Yi ; εi is the error of Yi .
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Setting up Reflective Measurement Models in LISREL II

Measurement Variables of Exogenous Latent Var. and their Errors:

The measurement variables X1, . . . ,Xq of the exogenous latent variables
ξ1, . . . , ξs are numbered consecutively (no relation to the numbering of the
endogenous latent variables ξ1, . . . , ξs).

x = (X1, . . . ,Xq)
′ =

(
vector of all measurement variables for the

endogenous latent variables ξ = (ξ1, . . . , ξs)
′

)

δ = (δ1, . . . , δq)′ =

(
vector of all measurement errors for the
measurement variables x = (X1, . . . ,Xq)

′

)

Factor Analytic Equation for an Exogenous Latent Variable:

Xi − µXi
= λX

i1 ξ1 + λX
i2 ξ2 + . . .+ λX

is ξs + δi

where: λX
ij is the coefficient for the effect of ξj on Xi ; δi is the error of Xi .

Dr. Kerstin Hesse (HHL) Structural Equation Modeling HHL, June 1-2, 2012 95 / 149



Ex. 4.1: Structural Equation Model

The structural model for the work of a software programmer on a
non-pay-scale salary (see Ex. 3.1) has now been equipped with the
reflective measurement models for the latent variables shown below.
Indicate all variables, errors and coefficients in the diagram and write down
the equations of the measurement models. The ratings (apart from the IQ
one) have been provided by the programmer’s superior.

IQ rating

rating for work 
independence

rating for work
initiative

average number  
of lines code writ−
ten per week

work per week
average hours of  

motivation

initiative

pay / salary 

intelligence

salary
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LISREL: Structural (Inner) Model with Assumptions

ξ1, . . . , ξs are the exogenous (independent) latent variables,

η1, . . . , ηr are the endogenous (dependent) latent variables,

ζi is the error term in regression equations for ηi , i = 1, . . . , r

γij is the coefficient for the effect of ξj on ηi

βij is the coefficient for effect of ηj on ηi , where βii = 0 for i = 1, 2, . . . , r

Linear Regression Equations: The latent variables are related by

ηi = βi1 η1 + βi2 η2 + . . . + βir ηr + γi1 ξ1 + γi2 ξ2 + . . .+ γis ξs + ζi .

Assumptions: For all i and for all j

E(ξi ) = 0, E(ηi ) = 0, E(ζi ) = 0, Cov(ξi , ζj ) = 0

Parameters: coefficients in regression equations γij , βij and (co)variances
φij = Cov(ξi , ξj ), φii = Var(ξi ), and ψij = Cov(ζi , ζj ), ψii = Var(ζi)

Other Unknowns: values of latent variables, Cov(ηi , ηj ), i , j = 1, . . . , r
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LISREL: Reflective Measurement Models I

Y1, . . . ,Yp are the measurement variables for η1, . . . , ηr ,

εi is the measurement error for Yi , and µYi
= E(Yi).

λY
ij is the coefficient for the effect of ηj on Yi .

X1, . . . ,Xq are the measurement variables for ξ1, . . . , ξs ,

δi is the measurement error for Xi , and µXi
= E(Xi).

λX
ij is the coefficient for the effect of ξj on Xi .

Factor Analytic Equations for the Measurement Variables:

Yi − µYi
= λY

i1 η1 + λY
i2 η2 + . . .+ λY

ir ηr + εi

Xi − µXi
= λX

i1 ξ1 + λX
i2 ξ2 + . . . + λX

is ξs + δi

Assumptions:

E(εi ) = 0 and E(δi ) = 0 for all i , i.e. the measurement errors have all
expectation value zero.
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LISREL: Reflective Measurement Models II

Assumptions (continued):

The errors do not correlate with the latent variables: for all i and j

Cov(εi , ηj ) = 0, Cov(εi , ξj) = 0, Cov(δi , ηj ) = 0, Cov(δi , ξj) = 0.

The errors for the different types of measurement variables do not
correlate with each other:

Cov(εi , δj ) = 0 for all i and all j .

The errors ζj for the endogenous latent variables ηj do not correlate
with the measurement errors εi and δi :

Cov(εi , ζj) = 0 and Cov(δi , ζj ) = 0 for all i and all j .

Parameters: coefficients λX
ij , λ

Y
ij in the measurement models and

(co)variances θεij = Cov(εi , εj ), θ
ε
ii = Var(εi ), and

(co)variances θδij = Cov(δi , δj ), θ
δ
ii = Var(δi )
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Idea: Compare Empirical with Model Covariance Matrix

The only measurable quantities in the LISREL approach are the
measurement variables (indicator variables) Xi and Yj .

From the structural equation model, the measurement variables are linked
via the paths that connect latent variables and measurement variables.

Hence, we expect that the measurement variables Xi , i = 1, 2, . . . , q, and
Yj , j = 1, 2, . . . , p, are correlated.

Comparison of Empirical and Model Covariance Matrix:

From the data for X1, . . . ,Xq and Y1, . . . ,Yp, we can compute the
empirical covariance matrix of the measurement variables.

From the equations of our SEM, we can compute the model covariance
matrix of the measurement variables in terms of the model parameters.

Equating the two allows us to estimate the model parameters of the SEM.
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Data Matrix & Estimating the Expectation Values

Data Matrix: Let e1, e2, . . . , en be the objects on which we have measured
the measurement variables X1, . . . ,Xq, Y1, . . . ,Yp. The data matrix is

(X,Y) =




x1,1 · · · x1,q y1,1 · · · y1,p

x2,1 · · · x2,q y2,1 · · · y2,p
...

...
...

...
xn,1 · · · xn,q yn,1 · · · yn,p




← data for e1

← data for e2
...

← data for en

↑ ↑ ↑ ↑
X1 · · · Xq Y1 · · · Yp

where xi1, . . . , xiq and yi1, . . . , yip are the data of X1, . . . ,Xq and
Y1, . . . ,Yp, respectively, for object ei .

Estimating the Expectation Values: µXj
= E(Xj) and µYj

= E(Yj) are
estimated by the column means

µXj
= E(Xj) ≈ xj =

1

n

n∑

i=1

xij and µYj
= E(Yj) ≈ yj =

1

n

n∑

i=1

yij .

Dr. Kerstin Hesse (HHL) Structural Equation Modeling HHL, June 1-2, 2012 101 / 149



Data Matrix and Covariance Matrix of the Centered Data

Data Matrix of the Centered Data:

W = (Wx,Wy)

=




x1,1 − x1 · · · x1,q − xq y1,1 − y1 · · · y1,p − yp

x2,1 − x1 · · · x2,q − xq y2,1 − y1 · · · y2,p − yp

...
...

...
...

xn,1 − x1 · · · xn,q − xq yn,1 − y1 · · · yn,p − yp




← e1

← e2
...

← en

↑ ↑ ↑ ↑
X1 − µX1

· · · Xq − µXq
Y1 − µY1

· · · Yp − µYp

Covariance Matrix of the Data of the Measurement Variables:

S =
1

n − 1
W′ W =

1

n − 1

(
W′

x

W′
y

)
(Wx,Wy)

=

(
1

n−1 W′
xWx

1
n−1 W′

xWy

1
n−1 W′

yWx
1

n−1 W′
yWy

)
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More on the Covariance Matrix of the Centered Data I

1
n−1 W′

xWx is the covariance matrix of the data of Xj , j = 1, . . . , q.
(

1
n−1 W′

xWx

)
jk

=
1

n − 1

n∑

i=1

(xij − xj) (xik − xk) = Ĉov(Xj ,Xk),

(
1

n−1 W′
xWx

)
jj

=
1

n − 1

n∑

i=1

(xij − xj)
2 = V̂ar(Xj)

W′
yWy is the covariance matrix of the data of Yj , j = 1, . . . , p.
(

1
n−1 W′

yWy

)
jk

=
1

n − 1

n∑

i=1

(yij − yj) (yik − yk) = Ĉov(Yj ,Yk),

(
1

n−1 W′
yWy

)
jj

=
1

n − 1

n∑

i=1

(yij − yj)
2 = V̂ar(Yj)

Notation: The ̂ in Ĉov and V̂ar indicates that the quantity is an
estimator of the covariance Cov and variance Var, respectively.
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More on the Covariance Matrix of the Centered Data II

W′
xWy = (W′

yWx)
′ is the matrix with all covariances between a variable

Xj , j = 1, . . . , q, and a variable Yk , k = 1, . . . , p.

(
1

n−1 W′
xWy

)
jk

=
1

n − 1

n∑

i=1

(xij − xj) (yik − yk) = Ĉov(Xj ,Yk)

Ex. 4.2 (Empirical Covariance Matrix): Given the data below for the
measurement variables X1 = yearly salary in 1000 Euros, Y1 = average
hours of work per week, Y2 = average number of lines of code per week
(measured in units of 100 lines of code), for a software programmer on a
non-pay-scale salary, compute the empirical covariance matrix S.

Programmer X1 Y1 Y2

e1 50 45 50

e2 60 55 55

e3 70 50 60
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Solving the LISREL Model

Strategy: We now want to compare the empirical covariance matrix S
with the model covariance matrix Σ that is obtained from our LISREL
model equations. (How to compute Σ is explained on the next slides.)

The model covariance matrix Σ will depend on the unknown parameters of
our LISREL model:

Param. (structural model): γij , βij , φij = Cov(ξi , ξj), ψij = Cov(ζi , ζj)

Param. (measurement model): λX
ij , λ

Y
ij , θ

δ
ij = Cov(δi , δj ), θ

ε
ij = Cov(εi , εj )

1 Equating Σ = S, under suitable circumstances we can identify all the
model parameters.

2 Finally the values of the latent variables can be computed from the
measurement models in the same way used to compute the values of
the factors in factor analysis (i.e. via solving an OLS problem).
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How to Compute the Model Covariance Matrix

We know (see ‘Topic 1: Revision of Linear Algebra and
Variance/Covariance’) that for two random variables X and Y

Cov(X ,Y ) = E
(
(X − µX ) · (Y − µY )

)
. (15)

Applying (15) and the linearity of the expectation value (see (6) on page
32) to the covariances Cov(Xi ,Xj), Cov(Xi ,Yj), Cov(Yi ,Yj) and using the
reflective measurement equations

Yi − µYi
= λY

i1 η1 + λY
i2 η2 + . . .+ λY

ir ηr + εi =

r∑

j=1

λY
ij ηj + εi (16)

Xi − µXi
= λX

i1 ξ1 + λX
i2 ξ2 + . . . + λX

is ξs + δi =

s∑

j=1

λX
ij ξj + δi (17)

and the model assumptions we obtain equations for these covariances in
terms of the model parameters (example on next slide).
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Computing the Entries of the Model Covariance Matrix I

Cov(Xi ,Xj) = E
(
(Xi − µXi

) · (Xj − µXj
)
)

= E
([
λX

i1 ξ1 + . . .+ λX
is ξs + δi

]
·
[
λX

j1 ξ1 + . . .+ λX
js ξs + δj

])

= E
(
λX

i1 λ
X
j1 ξ1 ξ1 + . . .+ λX

is λ
X
j1 ξs ξ1 + . . . + λX

i1 λ
X
js ξ1 ξs

+ . . .+ λX
is λ

X
js ξs ξs + λX

i1 ξ1 δj + . . .+ λX
is ξs δj

+λX
j1 δi ξ1 + . . .+ λX

js δi ξs + δi δj

)

= λX
i1 λ

X
j1 E(ξ1 ξ1)︸ ︷︷ ︸

= Var(ξ1)=φ1,1

+ . . .+ λX
is λ

X
j1 E(ξs ξ1)︸ ︷︷ ︸
=Cov(ξs ,ξ1)=φs,1

+ . . .+ λX
i1 λ

X
js E(ξ1 ξs)︸ ︷︷ ︸
= Cov(ξ1,ξs)=φ1,s

+ . . .+ λX
is λ

X
js E(ξs ξs)︸ ︷︷ ︸

= Var(ξs )=φs,s

+λX
i1 E(ξ1 δj )︸ ︷︷ ︸
= Cov(ξ1,δj) =0

+ . . .+ λX
is E(ξs δj)︸ ︷︷ ︸
= Cov(ξs ,δj )= 0

+λX
j1 E(δi ξ1)︸ ︷︷ ︸

=Cov(δi ,ξ1)= 0

+ . . .+ λX
js E(δi ξs)︸ ︷︷ ︸

=Cov(δi ,ξs) =0

+ E(δi δj)︸ ︷︷ ︸
=Cov(δi ,δj) = θδ

ij
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Computing the Entries of the Model Covariance Matrix II

and we find: Cov(Xi ,Xj ) = λX
i1 λ

X
j1 φ1,1 + . . .+ λX

is λ
X
j1 φs,1 + . . .

+λX
i1 λ

X
js φ1,s + . . . + λX

is λ
X
js φs,s + θδij (18)

Next we would compute the other covariances Cov(Yi ,Yj ) and
Cov(Xi ,Yj) = Cov(Yj ,Xi ) and then equate them with the respective
empirical covariances:

Cov(Xi ,Xj) = Ĉov(Xi ,Xj), i , j = 1, . . . , q, (19)

Cov(Yi ,Yj) = Ĉov(Yi ,Yj), i , j = 1, . . . , p, (20)

Cov(Xi ,Yj) = Ĉov(Xi ,Yj), i = 1, . . . , q, j = 1, . . . , p. (21)

This looks complicated, but for each i usually only a few (often one) of the
coefficients λY

ij , j = 1, . . . , r , in (16) and λX
ij , j = 1, . . . , s, in (17) are 6= 0.

We will test this for a very simple toy example of a SEM on slide 112.

Inspecting (18), we see that (although we have a linear LISREL model)
the covariance equations in the model parameters are in general nonlinear.

Dr. Kerstin Hesse (HHL) Structural Equation Modeling HHL, June 1-2, 2012 108 / 149



Identifiable Models

Identifiable Model: A LISREL model is identifiable, if there exists a
unique and valid set of model parameters such that the equations (19),
(20) and (21) from equating the empirical and the model covariance
matrix are true.

A necessary (but not sufficient) condition for the identifiability of a
LISREL model is that the number of equations equals or is larger than the
number of the model parameters. The number of covariance equations is

(p + q)2 − (p + q)

2
+ (p + q) =

(p + q + 1)(p + q)

2
.

There are more complicated criteria that allow to determine whether
a LISREL model is identifiable.

What do we mean by a valid set of parameters? There are some
solutions for the model parameters that do not make sense, such as
solutions with negative variances. Such solutions are not valid.
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Choosing the Scale of the Latent Variables

The latent variables do not come with a ‘natural’ scale, and therefore we
can prescribe the scale in the following ways:

Choosing the Scale of Exogenous Latent Variables:

For the exogenous latent variables ξi , we prescribe φii = Var(ξ) = 1.

Alternatively, for each ξi we can choose one non-zero coefficient λX
ji to

have the value one λX
ji = 1, i.e. the exogenous latent variable ξi has the

same scale as one of its centered measurement variables Xj − µXj
.∗

Choosing the Scale of Endogenous Latent Variables:

For the endogenous latent variables ηi , we choose one non-zero coefficient
λY

ji to have the value one λY
ji = 1, i.e. the endogenous latent variable ηi

has the same scale as one of its measurement variables Yj − µYj
.∗

∗ Choose a coefficient for having value one that you expect to be positive.
Dr. Kerstin Hesse (HHL) Structural Equation Modeling HHL, June 1-2, 2012 110 / 149



Restrictions on Model Parameters

Parameters in the LISREL model can be restricted if this is supported by
logical cause-effect considerations:

1 Individual error terms δi or εj can be set to zero if Xi or Yj ,
respectively, are measured exactly.

2 Individual coefficients can be set to be equal, e.g. λX
1,1 = λX

2,1 = a,
where a is some number that still needs to be determined.

3 Individual coefficients λX
ij or λY

ij can be set to equal a fixed value.

4 Individual covariances φij , ψij , θ
δ
ij or θεij can be set to be zero.

Attention:

Any restrictions of parameters need to be founded on logical
cause-effect considerations!
Each type of restriction reduces the number of (free) parameters by
one. Consequently the restriction of some parameters can make a
LISREL model identifiable.
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Ex. 4.3: Solving a Structural Equation Model with LISREL

To demonstrate the solution of a structural equation model with LISREL,
we consider the simplified model for the work of a software programmer on
a non-pay-scale salary shown in the diagram below.

X

salary salarymotivation

average hours
of work per
week

λ
ζ

ξ
γθε

λ

λ 11

1η1 1

1

11

11

21

ε 1

ε 2

12

=1
δ  = 0= 0

=1

average num−
ber of lines of
code per week

X1

2Y

Y1

Y

Y

1 Set up the structural equation model by specifying the structural
(inner) model and the (outer) measurement model.

2 Determine with the LISREL approach the model parameters in terms
of the covariances of the measurement variables.

3 Use the empirical covariance matrix from Ex. 4.2 to compute the
numerical values for the parameters and interpret your results.
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How the LISREL Model is Computed in Practice

For complicated LISREL Models it is not feasible to equate the empirical
and model covariance covariance matrix and solve for the parameters.

Minimization Problem: Let τ denote the vector of all model parameters
of the LISREL model. A discrepancy function F (S,Σ(τ )) for measuring
the distance between the model covariance matrix Σ(τ ) and the empirical
covariance matrix S is minimized:

Find τ 0 such that F
(
S,Σ(τ 0)

)
= min

τ
F
(
S,Σ(τ )

)
,

where the minimization is over all valid choices of the parameter vector τ .

Ordinary Least Squares Discrepancy Function:

F
(
S,Σ(τ )

)
=

1

2

p+q∑

i=1

p+q∑

j=1

[
Sij −

(
Σ(τ )

)
ij

]2
=

1

2

(
sum of squares of all
entries of S−Σ(τ )

)
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More on Discrepancy Fcts. and the Minimization Problem

Generalized Least Squares Discrepancy Function:

F
(
S,Σ(τ )

)
=

1

2

p+q∑

i=1

p+q∑

j=1

[(
[S−Σ(τ )]S−1

)
ij

]2
=

1

2




sum of squares
of all entries of
[S−Σ(τ )]S−1




Maximum Likelihood (ML) Discrepancy Function:

F
(
S,Σ(τ )

)
= ln

(
det(Σ(τ ))

)
+ tr

(
S (Σ(τ ))−1

)
− ln

(
det(S)

)
− (p + q)

How is the minimization problem solved?

An iterative algorithm is used that computes a sequence of approximations
τ k , k = 1, 2, . . ., of the parameter vector τ 0, such that

F
(
S,Σ(τ k+1)

)
≤ F

(
S,Σ(τ k)

)
.

The iterative algorithm stops when dist(τ k+1, τ k) is very small, i.e. when
the parameter vectors change only very little in subsequent iterative steps.
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Evaluation of a LISREL Model: Quality Criteria

There is a variety of criteria for evaluating how a well a LISREL model (as
a whole or also its individual parts) models the data.

This goes beyond the scope of this course, but if you work with structural
equation models, you will have to learn about these quality criteria.

Some words of general advice and a first assessment of your model:

Do the path coefficients in the inner model and in the measurement
models have the expected signs? If not your LISREL model supports
causal relationships that are contrary to your expected cause-effect
relationships!

Do you get negative variances or other effects that cannot occur in a
correct model? If so, this may indicate a badly specified model or
numerical problems in solving the LISREL model.
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LISREL: Structural (Inner) Model in Matrix Form

ξ = (ξ1, . . . , ξs)
′ = vector of exogenous (independent) latent variables ξi

η = (η1, . . . , ηr )
′ = vector of endogenous (dependent) latent variables ηi

ζ = (ζ1, . . . , ζr )
′ = vector of error variables ζi in regression equations for ηi

Γ = (γij) = r × s matrix with the coefficients γij for the effect of ξj on ηi

B = (βij) = r × r matrix with the coefficients βij for the effect of ηj on ηi ,
where βii = 0 for all i = 1, 2, . . . , r

Structural (Inner) Model in Matrix Form: η = Bη + Γ ξ + ζ

Assumptions: E(ξ) = 0, E(η) = 0, E(ζ) = 0, Cov(ξ, ζ) = 0.

Parameters: coefficient matrices B = (βij ), Γ = (γij) and covariance
matrices Ψ = (Cov(ζi , ζj)) = Cov(ζ, ζ), Φ = (Cov(ξi , ξj)) = Cov(ξ, ξ)

Other Unknowns: values of latent variables, Cov(ηi , ηj ), i , j = 1, . . . , r
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LISREL: Reflective Measurement Model in Matrix Not. I

y = (Y1, . . . ,Yp)
′ = vector of measurement variables for η1, . . . , ηr

µy = (µY1
, . . . , µYp

)′ = vector of expectation values of Y1, . . . ,Yp

ε = (ε1, . . . , εp)′ = vector of measurement errors for Y1, . . . ,Yp

ΛY = (λY
ij ) = p × r matrix with coefficients λY

ij for the effect of ηj on Yi

x = (X1, . . . ,Xq)
′ = measurement variables for ξ1, . . . , ξs

µx = (µX1
, . . . , µXq

)′ = vector of expectation values of X1, . . . ,Xq

δ = (δ1, . . . , δq)′ = vector of measurement errors for X1, . . . ,Xq

ΛX = (λX
ij ) = q × s matrix with coefficients λX

ij for the effect of ξj on Xi

Factor Analytical Equations:

y −µy = ΛY η + ε (22)

x−µx = ΛX ξ + δ (23)
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LISREL: Reflective Measurement Model in Matrix Not. II

Assumptions:

E(ε) = 0 and E(δ) = 0

Cov(ε,η) = 0, Cov(ε, ξ) = 0, Cov(δ,η) = 0 and Cov(δ, ξ) = 0

Cov(ε, δ) = 0

Cov(ε, ζ) = 0 and Cov(δ, ζ) = 0

Parameters: coefficient matrices ΛX , ΛY and the covariance matrices
Θε = (θεij) = Cov(ε, ε) with θεij = Cov(εi , εj ), and

Θδ = (θδij) = Cov(δ, δ) with θδij = Cov(δi , δj )

Model Covariance Matrix: In matrix notation our model covariance
matrix can be decomposed into four blocks:

Σ =

(
Σxx Σxy

Σyx Σyy

)
, where Σyx = Σ′

xy.
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Model Covariance Matrix

Σxx = Cov(x, x) = E
(
(x− µx) (x − µx)

′
)

Σxy = Σ′
yx = Cov(x, y) = E

(
(x− µx) (y −µy)

′
)

(24)

Σyy = Cov(y, y) = E
(
(y − µy) (y − µy)

′
)

Using (22) and (23) we can now compute (24) in terms of the model
parameters. E.g. using (23) we find

Σxx = E
(
(x−µx) (x − µx)

′
)

= E
(
[ΛX ξ + δ] [ΛX ξ + δ]′

)
= E

(
[ΛX ξ + δ]

[
ξ′ Λ′

X + δ′
])

= E
(
ΛX ξ ξ′ Λ′

X + δ ξ′ Λ′
X + ΛX ξ δ′ + δ δ′

)

= ΛX E(ξ ξ′)︸ ︷︷ ︸
=Cov(ξ,ξ)= Φ

Λ′
X + E(δ ξ′)︸ ︷︷ ︸

= Cov(δ,ξ) =0

Λ′
X + ΛX E(ξ δ′)︸ ︷︷ ︸

=Cov(ξ,δ)= 0

+ E(δ δ′)︸ ︷︷ ︸
=Cov(δ,δ)= Θδ

= ΛX ΦΛ′
X + Θδ

where we have used the fact that the expectation value is linear to pull the
matrix ΛX out the expectation values and have also used the assumptions
on the previous pages.
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Topic 5: PLS (Partial Least Squares) Path Modeling

Introduction to the PLS Path Model

some facts about PLS

mathematical properties of PLS

setting up the structural model for PLS path modeling

Numerical Computation of the PLS Path Model: The PLS Algorithm

data matrices for the measurement blocks

An iteration step of the iterative algorithm has 3 substeps:

Step 1: outer estimation stage – computing values for the latent
variables as a weighted sum of the measurement variables

Step 2: inner estimation stage – computing new values for the latent
variables as weighted sum of related latent variables

Step 3: computing new weights (for the weighted sum in step 1) –
solving an ordinary least squares problem for each measurement block

After the iterative algorithm terminates we compute the final values of
the latent variables and the path coefficients in the inner model.
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Some Facts & Recommendations from the Literature

PLS: PLS Path Modeling is often called just PLS.

Why is it Called ‘Partial Least Squares’? In each iterative step of PLS
we solve a sequence of local (partial) ordinary least squares problems.

PLS can be used to model causal models with either formative or
reflective measurement models/blocks or a mixture of both.

PLS makes no distributional assumptions but gives also less
information about the model quality (than LISREL).

PLS aims to maximize the variance of the variables explained by the
model.

PLS is considered more useful for exploratory purposes and less for
confirmatory purposes.

Because PLS makes no distributional assumptions, it is called a soft
modeling approach.
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Mathematical Features of PLS Path Modeling

Iterative Algorithm: PLS is an iterative algorithm, i.e. we execute certain
steps repeatedly until some convergence criterion is satisfied (or until we
have reached the maximum number of iteration steps).

Does the PLS Algorithm Converge? There is no formal proof of
convergence for more than two measurement blocks, but in most practical
applications PLS appears to converge.

Example Iterative Algorithm: Set x = 0.
For n = 1, 2, . . . do the following

set xold = x

compute x = xold + 1
2n

}
iteration step

until |x − xold| < 0.01 (stopping criterion)

This algorithm converges to the number 2. If we replace x = xold + 1
2n by

x = xold + 1, then the algorithm does not converge (it diverges).
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Latent Variables and Structural (Inner) Model in PLS

The latent variables are ξq, q = 1, . . . ,Q. We do not distinguish in
the notation between exogenous and endogenous latent variables.

Latent variables are centered, i.e. E(ξq) = 0 for all q = 1, . . . ,Q.

The regression equations in the structural (inner) model can be written as

ξj =

Q∑

q=1,
q:ξq→ξj

βjq ξq + ζj , j = 1, . . . ,Q, (25)

where q : ξq → ξj means that we only sum over those indices q for which
we have an arrow pointing from ξq to ξj in our path diagram.

As usual ζj is the error term for ξj , satisfying E(ζj) = 0. βjq is the
coefficient for the effect of ξq on ξj ; it is assumed that βjq 6= 0.

Note: (25) is the same equation as in LISREL; we only exclude in
notation directly any zero coefficients.
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Example: Structural (Inner) Model with PLS

Example: SEM diagram for PLS for the work of a software programmer
on a non-pay-scale salary.

(2)

salarymotivation

average hours
of work per
week

λ
ζ

ξ

λ

λ 11

1

1

22
average num−
ber of lines of
code per week

X
ξ 2

X

salary X δ    = 0

12
δ

δ

21
β

1

2

1

2

1 1 
(1) (1)

(2)

(2)

(2)

Regression equations in PLS for the structural (inner) model:

ξ2 = β2,1 ξ1 + ζ1 (26)

Note: Inspecting the SEM diagram above, we see that the notation has
also changed: Measurement variables are now organized in blocks.
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Measurement Blocks in PLS

Measurement Block of a Latent Variable: Each latent variable ξq has
a measurement block consisting of all its Pq measurement variables which

we name X
(q)
1 , . . . ,X

(q)
Pq

(upper index (q) for the latent variable ξq).

Example (continued): We have indicated the measurement blocks in the
SEM diagram of our example.

2

salarymotivation

average hours
of work per
week

λ
ζ

ξ

λ

λ 11

1

1

22
average num−
ber of lines of
code per week

X
ξ 2 salary X

12
δ

δ2

21
β

Measurement Block 2 for 

Measurement Block 1 for ξ

ξ 2

1

1 δ    = 0(1)
1
(1)

1

1

(2)

(2)

(2)

(2)X
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Example: Reflective Measurement Blocks in PLS

Measurement Block for ξ1: The factor analytic equation is

X
(1)
1 − µ

X
(1)
1

= λ1,1 ξ1 + δ
(1)
1 , (27)

where: µ
X

(1)
1

is the expectation value of X
(1)
1 ; δ

(1)
1 is error term;

λ1,1 is the coefficient for the effect of ξ1 on X
(1)
1 .

Measurement Block for ξ2: The two factor analytic equations are

X
(2)
1 − µ

X
(2)
1

= λ1,2 ξ2 + δ
(2)
1 , (28)

X
(2)
2 − µ

X
(2)
2

= λ2,2 ξ2 + δ
(2)
2 , (29)

where: µ
X

(2)
1

and µ
X

(2)
2

are the expectation values of X
(2)
1 and X

(2)
2 ;

δ
(2)
1 and δ

(2)
2 are the error terms; λ1,2 is the coefficient for the effect of ξ2

on X
(2)
1 ; λ2,2 is the coefficient for the effect of ξ2 on X

(2)
2 .
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Formative Measurement Blocks in PLS

Measurement Variable Notation (for Both Measurement Models):

All measurement variables are written as X
(q)
p , where the upper index (q)

indicates that X
(q)
p measures the latent variable ξq. For each latent

variable ξq, we number its Pq measurement variables:

X
(q)
p , p = 1, 2, . . . ,Pq.

Formative Measurement Block for ξq:

ξq =

Pq∑

p=1

λqp

(
X

(q)
p − µ

X
(q)
p

)
+ δq,

where µ
X

(q)
p

is the expectation value of X
(q)
p , and where δq is error term.

The coefficient λqp is the coefficient for the effect of X
(q)
p on ξq.

Assumptions: E(δq) = 0 and Cov(δq,X
(q)
p ) = 0 for all p = 1, . . . ,Pq.
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Reflective Measurement Blocks in PLS

Reflective Measurement Block for ξq:

X
(q)
p − µ

X
(q)
p

= λpq ξq + δ
(q)
p , p = 1, 2, . . . ,Pq,

where µ
X

(q)
p

is the expectation value of X
(q)
p , and where δ

(q)
p is error term.

The coefficient λpq is the coefficient for the effect of ξq on X
(q)
p .

Assumptions: E(δ
(q)
p ) = 0 and Cov(δ

(q)
p , ξq) = 0 for all p = 1, . . . ,Pq.

Requirements on a Reflective Measurement Block for ξq:

unidimensionality: In a factor analytic model for the measurement
variables in the block, all variables in that block are mainly explained
the factor ξq.

homogeneity: The correlations between ξq and its measurement

variables X
(q)
p have all the same sign.
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MIMIC Model and Sampling Data

MIMIC Model: A MIMIC model is a structural equation model with
some reflective and some formative measurement blocks. PLS can handle
MIMIC models.

Sampling Data:

All measurement variables are observed for the same N objects
e1, . . . , eN (regardless to which measurement block these
measurement variables belong).

Data is organized by measurement block: in the block for ξq we have

x
(q)
np = value of random variable X

(q)
p for object en

where n = 1, 2, . . . ,N (for the N objects) and p = 1, 2, . . . ,Pq (for
the Pq measurement variables in the block for ξq)
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PLS Algorithm: The Iterative Algorithm

One Iterative Step:

1 We compute the latent variables, by taking a weighted sum (linear
combination) of the corresponding measurement variables.

2 We compute new latent variables as weighted sums of the related
latent variables. (A latent variable is related to another latent
variable, if it is connected with this latent variable by an arrow.)

3 We compute new weights for the sum in step 1: This is done for each
measurement block separately by solving an ordinary least squares
problem. There are two ways for computing the new weights that
roughly correspond a formative or a reflective measurement block.

After step 3 we start again with step 1, now using the new weights (that
were computed in step 3) in the new step 1.

Stopping criterion: Once the weights from step 3 change only very little
from one iterative step to the next, we stop the iterative algorithm.
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PLS Algorithm: Compute Latent Variables & Path Coeffs.

Final Latent Variables:

Once the iterative algorithm has stopped, we use the weights from the last
step 3, and execute step 1 once more to compute the final latent variables
from the measurement variables of the corresponding block.

Computation of the Path Coefficients:

With the final latent variables, we use regression (i.e. ordinary least
squares) to compute the path coefficients of the structural (inner) model.

Remark on the Algorithm in General: For brevity we talk in the
algorithm about the measurement variables and latent variables. The
computations are of course done with the data for these variables for the
objects e1, e2, . . . , eN in the sample.
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Iterative Algorithm in PLS: Input and Explanation

Input:

for each q = 1, . . . ,Q, the centered data for the qth measurement

block for ξq: x
(q)
n,p − x

(q)
p , p = 1, . . . ,Pq, n = 1, . . . ,N

initial weight vectors w(q) = (w
(q)
1 , . . . ,w

(q)
Pq

)′, q = 1, . . . ,Q, for the

Q measurement blocks, i.e. w(q) = weight vector for block for ξq

(The initial weights could for example be chosen all equal,

i.e. w(q) = (1/Pq , . . . , 1/Pq)′ with w
(q)
p = 1/Pq for p = 1, . . . ,Pq.)

Iterative Algorithm Explained on Two Levels:

We explain the algorithm in parallel as an algorithm for the random
variables and as an algorithm for the measured data from the sample.

The algorithm for the random variables is more intuitive but we
cannot compute anything.
The algorithm for the measured data transforms the algorithm for the
random variables into a computable version for the measured data.
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Iterative Algorithm – Step 1: Outer Estimation Stage

Random Variable Level:

For q = 1, . . . ,Q the latent variable ξq is estimated via the standardized

variable ξ̂q = (ηq − µηq )/σηq , where

ηq = ±
Pq∑

p=1

w
(q)
p

(
X

(q)
p − µ

X
(q)
p

)
, (30)

i.e. we approximate ξq by a standardized linear combination of its

measurement variables X
(q)
1 , . . . ,X

(q)
Pq

.

Data Level:

For each object en, n = 1, . . . ,N, and each q = 1, . . . ,Q, we compute
(following (30)) a value for ηq

ηnq = ±
Pq∑

p=1

w
(q)
p

(
x

(q)
np − x

(q)
p

)
. (31)
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Iterative Algorithm – Step 1: Outer Estimation Stage

Then we standardize the data for the random variable ηq, i.e.

ηq =
1

N

N∑

n=1

ηnq and sηq =

√√√√ 1

N − 1

N∑

n=1

(ηnq − ηq)2

and the data of the estimator ξ̂q of ξq for object en is given by

ξnq =
ηnq − ηq

sηq

.

Choice of the Sign in (30) and (31): The sign in (30) and (31) is
chosen such that ηq is positively correlated with the majority of its

measurement variables X
(q)
1 ,X

(q)
2 , . . . ,X

(q)
Pq

(i.e. at least 50% of the

non-zero empirical covariances Ĉov(ηq,X
(q)
p ), p = 1, . . . ,Pq, are positive).

We note that ηq and its data satisfy by design µηq = 0 and ηq = 0.
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Ex. 5.1 (a) Step 1 of the Iterative Algorithm

For the SEM in the example on pages 125–127 (which describes the work
of a software programmer on a non-pay-scale salary) with the model
equations (26) to (29), we are given the following data

Programmer X
(1)
1 X

(2)
1 X

(2)
2

e1 50 45 50

e2 60 55 55

e3 70 50 60

for the measurement variables: X
(1)
1 = yearly salary in 1000 Euros,

X
(2)
1 = average hours of work per week, X

(2)
2 = average number of lines of

code per week (measured in units of 100 lines of code). Using equal
weights as the initial weights, execute step 1 of the PLS algorithm.
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Iterative Algorithm – Step 2: Inner Estimation Stage

Random Variable Level: For q = 1, . . . ,Q, the latent variable ξq is
approximated by the standardized variable νq = (ρq − µρq)/σρq , where

ρq =

Q∑

j=1,
q: ξq→ξj ,

or q: ξj→ξq

eqj ξ̂j . (32)

The summation is over all latent variables that are connected with ξq via
an arrow. We approximate ξq by a standardized linear combination of the

estimators ξ̂j (computed in step 1) of those random variables that are
connected with ξq.

Schemes for Choosing the Weights eqj (see also page 139):

Centroid scheme: eqj = sign of Cov(ξ̂q, ξ̂j)

Factorial scheme: eqj = (correlation between ξ̂q and ξ̂j) = Cov(ξ̂q, ξ̂j)

Path weighting scheme: see literature
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Iterative Algorithm – Step 2: Inner Estimation Stage

Data Level: For each object en, n = 1, 2, . . . ,N, and for q = 1, . . . ,Q, we
compute (analogously to (32)) a value for ρq:

ρnq =

Q∑

j=1,
q: ξq→ξj ,

or q: ξj→ξq

eqj ξnj . (33)

Then we standardize the data for the random variable ρq, i.e.

ρq =
1

N

N∑

n=1

ρnq and sρq =

√√√√ 1

N − 1

N∑

n=1

(ρnq − ρq)2

and the data for object en for νq is given by

νnq =
ρnq − ρq

sρq

.

We note that by design E (ρq) = 0 and ρq = 0.
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Iterative Algorithm – Comments on Step 2

Practical Computation of the Weights eqj :
The weights must eqj must be computed from the empirical covariance of

ξ̂q and ξ̂j : eqj = sign of Ĉov(ξ̂q, ξ̂j) (for the centroid scheme) or

eqj = Ĉov(ξ̂q, ξ̂j) (for the factorial scheme), where

Ĉov(ξ̂q, ξ̂j ) =
1

N − 1

N∑

n=1

(ξnq − ξq︸︷︷︸
= 0

) (ξnj − ξj︸︷︷︸
=0

) =
1

N − 1

N∑

n=1

ξnq ξnj

which is just the correlation (coefficient) of ξ̂q and ξ̂j because ξ̂q and ξ̂j
are standardized.

Ex. 5.1 (b) Step 2 of the Iterative Algorithm

Using the results from Ex. 5.1 (a) for the structural equation model given
in Ex. 5.1 (a), execute step 2 of the iterative algorithm with the centroid
weights scheme.
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Iterative Algorithm – Step 3: New Weights, Mode A

Mode A for the computation of the new weights w
(q)
p is more appropriate

for PLS with reflective measurement models.

Mode A is also suggested for endogenous latent variables.

Mode A – Random Variable Level:

w
(q)
p = Cov(X

(q)
p , νq) =




covariance of the measurement

variable X
(q)
p and the approximation νq

of the latent variable ξq from step 2




Mode A – Data Level: From the data for the objects e1, e2, . . . , eN , we

compute the new weights w
(q)
p via

w
(q)
p = Ĉov(X

(q)
p , νq) =

1

N − 1

N∑

n=1

(
x

(q)
np − x

(q)
p

)
νnq. (34)
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Iterative Algorithm – Step 3: Explanation of Mode A

Consider the reflective measurement equation for measuring ξq with X
(q)
p :

X
(q)
p − µ

X
(q)
p

= λpq νq + δ
(q)
p ,

where we have replaced ξq by its approximation νq.

We have data for νq and X
(q)
p − µ

X
(q)
p

, and finding the coefficient λpq

becomes a regression (OLS) problem: The minimization problem

min
λpq

(
N∑

n=1

[(
x

(q)
np − x

(q)
p

)
− λpq νnq

]2
)

leads to the formula (use calculus)
N∑

n=1

(
x

(q)
np − x

(q)
p

)
νnq = λpq

N∑

n=1

(νnq)2

︸ ︷︷ ︸
=N−1

,

and after division by N − 1 we find (34) with w
(q)
p = λpq.
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Exercise Continued and Centered Data Matrices

Ex. 5.1 (c) Step 3 (Mode A) of the Iterative Algorithm

Using the results from Ex. 5.1 (a) to (b) for the structural equation model
given in Ex. 5.1 (a), execute step 3 of the iterative algorithm.

Centered Data Matrix for the Measurement Block for ξq:

Y(q) =
(
x

(q)
np − x

(q)
p

)
n=1,...,N
p=1,...,Pq

=




x
(q)
1,1 − x

(q)
1 x

(q)
1,2 − x

(q)
2 · · · x

(q)
1,Pq
− x

(q)
Pq

x
(q)
2,1 − x

(q)
1 x

(q)
2,2 − x

(q)
2 · · · x

(q)
2,Pq
− x

(q)
Pq

...
...

. . .
...

x
(q)
N,1 − x

(q)
1 x

(q)
N,2 − x

(q)
2 · · · x

(q)
N,Pq
− x

(q)
Pq




← e1

← e2

...

← eN

↑ ↑ ↑
X

(q)
1 − µ

X
(q)
1

X
(q)
2 − µ

X
(q)
2

· · · X
(q)
Pq
− µ

X
(q)
Pq
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Iterative Algorithm – Step 3: New Weights, Mode B

Mode B for the computation of the new weights is more appropriate for
PLS with formative measurement models.

Mode B is also suggested for exogenous latent variables.

Mode B – Random Variable Level: This is only relevant for the
derivation of the formula for the weights (see next page).

Mode B – Data Level:

With w(q) = (w
(q)
1 , . . . ,w

(q)
Pq

)′ and νq = (ν1q, . . . , νnq)′ compute the

weights w
(q)
p via the ordinary least squares (OLS) equation

w(q) =
[
(Y(q))′(Y(q))

]−1
(Y(q))′ νq. (35)
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Iterative Algorithm – Step 3: Explanation of Mode B

Consider the formative measurement equation for measuring the

measurement variables ξq with X
(q)
1 , . . . ,X

(q)
Pq

:

νq =

Pq∑

p=1

λqp

(
X

(q)
p − µ

X
(q)
p

)
+ δq,

where we have replaced ξq by its approximation νq.

We have data for νq and X
(q)
p − µ

X
(q)
p

, and finding the coefficient λpq

becomes a regression (OLS) problem: The minimization problem

min
λpq ,where
p=1,...,Pq




N∑

n=1


νnq −

Pq∑

p=1

λqp

(
x

(q)
np − x

(q)
p

)



2


leads (use calculus) to the linear system (Y(q))′(Y(q)) λ(q) = (Y(q))′ νq ⇔
λ(q) =

[
(Y(q))′(Y(q))

]−1
(Y(q))′ νq, where λ(q) = (λq1, . . . , λqPq

)′ and

νq = (ν1q, . . . , νnq)′. We get (35) with w(q) = λ(q).
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Stopping Criterion for the Iterative Algorithm

Test Quantity: Once we are finished with Steps 1-3 we have completed
one iteration step, and we compute

∆ = max
{∣∣(w (q)

p )new − (w
(q)
p )old

∣∣ with p = 1, . . . ,Pq; q = 1, . . . ,Q
}
,

where (w
(q)
p )new are the new weights just computed in step 3 and where

(w
(q)
p )old are the old weights used in step 1.

Interpretation: ∆ measures how much the weights have changed from
one iteration step to the next one.

If ∆ > ǫ, where ǫ is a fixed small number e.g. ǫ = 0.0001, then we return
to step 1 and execute steps 1-3 again, but now we use the new weights

w
(q)
p = (w

(q)
p )new (just computed in step 3) in step 1.

If ∆ ≤ ǫ then we stop and proceed as explained on the next pages.
Dr. Kerstin Hesse (HHL) Structural Equation Modeling HHL, June 1-2, 2012 145 / 149



Final Values of the Latent Variables and Path Coefficients

Once the iteration has stopped we take the weights w
(q)
p from the last

step 3, and execute step 1 once to compute the final estimates for the
values of the latent variables ξq with these weights: in the notation from
step 1

(ξn1, . . . , ξnQ) = estimator of ξ1, . . . , ξQ for object en.

Computation of the Path Coefficients:

The regression equations in the structural (inner) model

ξj =

Q∑

q=1,
q:ξq→ξj

βjq ξq + ζj

can now be solved with ordinary least squares (OLS) as we have data for ξj
and for all ξq. Remember, we sum only over those indices q for which we
have an arrow pointing from ξq to ξj . For notational purposes, let Mj be
the set of all indices q such that there is an arrow pointing from ξq to ξj .
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Computation of the Path Coefficients in the Inner Model

With ξj = (ξ1j , . . . , ξnj )
′ and ζ j = (ζ1j , . . . , ζnj)

′ the regression equations

ξnj =
∑

q inMj

βjq ξnq + ζnj

can be written in matrix notation

ξj = Ξj βj + ζ j , (36)

where:

The matrix Ξj contains the data of the latent variables ξq (with q in
Mj) from whom an arrow points to ξj : More precisely the nth row of
Ξj contains the data of object en for these variables.

The vector βj contains the coefficients that appear in (36), i.e. the
coefficients βjq with q in Mj .

The least squares solution to (36) is given by: βj = (Ξ′
jΞj)

−1 Ξ′
j ξj
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Ex. 5.1 Continued

Ex. 5.1 (d) One More Iterative Step
Using the results from Ex. 5.1 (a) to (c) for the structural equation model
given in Ex. 5.1 (a), execute a second iterative step of the iterative
algorithm.

Ex. 5.1 (e) Further Iterative Steps
Inspect the results and computations from Ex. 5.1 (a) to (d) for the
structural equation model given in Ex. 5.1 (a), and in particular compare

the weights w
(q)
p from the two iterative steps and observe their effect. Use

your observations to predict the results of subsequent iterative steps.
What happens after the third iterative step?

Ex. 5.1 (f) Values of the Latent Variables and Path Coefficients
Using the results from Ex. 5.1 (a) to (d) for the structural equation model
given in Ex. 5.1 (a), stop the iterative algorithm after the third step and
compute the estimates of the latent variables and the path coefficients.
Inspect your results.
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Ex. 5.2: Comparing the PLS Model and the LISREL Model

Compare the coefficients of the PLS model from Ex. 5.1 with the LISREL
model from Ex. 4.3. To do this, you need to consider the standardized
coefficients, because the variables in the two models are scaled differently.

For a regression equation

X − µX = γ1 ξ1 + γ2 ξ2 + . . . + γm ξm + δ,

where δ is the error term and γ1, γ2, . . . , γm the coefficients, the
standardized coefficients γ̃j are given by

γ̃j = γj ·
σξj
σX

= γj ·
standard deviation of ξj
standard deviation of X

. (37)

For computing the standardized coefficients, we have to estimate the
standard deviations in (37) by the empirical standard deviations sξj and sX
computed from the data.
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